identification

The effect of observables, functional specifications, model features and shocks on identification in linearized DSGE models

The decisions a researcher makes at the model building stage are crucial for parameter identification. This paper contains a number of applied tips for solving identifiability problems and improving the strength of DSGE model parameter identification by fine-tuning the (1) choice of observables, (2) functional specifications, (3) model features and (4) choice of structural shocks. We offer a formal approach based on well-established diagnostics and indicators to uncover and address both theoretical (yes/no) identifiability issues and weak identification from a Bayesian perspective. The concepts are illustrated by two exemplary models that demonstrate the identification properties of different investment adjustment cost specifications and output-gap definitions. Our results provide theoretical support for the use of growth adjustment costs, investment-specific technology, and partial inflation indexation.

Local Identification of Nonlinear and Non-Gaussian DSGE Models

This thesis adds to the literature on the local identification of nonlinear and non-Gaussian DSGE models. It gives applied researchers a strategy to detect identification problems and means to avoid them in practice. A comprehensive review of existing methods for linearized DSGE models is provided and extended to include restrictions from higher-order moments, cumulants and polyspectra. Another approach, established in this thesis, is to consider higher-order approximations. Formal rank criteria for a local identification of the deep parameters of nonlinear or non-Gaussian DSGE models, using the pruned state-space system are derived. The procedures can be implemented prior to estimating the nonlinear model. In this way, the identifiability of the Kim (2003) and the An and Schorfheide (2007) model are demonstrated, when solved by a second-order approximation.

Identification of DSGE models - The effect of higher-order approximation and pruning

This paper shows how to check rank criteria for a local identification of nonlinear DSGE models, given higher-order approximations and pruning. This approach imposes additional restrictions on (higher-order) moments and polyspectra, which can be used to identify parameters that are unidentified in a first-order approximation. The identification procedures are demonstrated by means of the Kim (2003) and the An and Schorfheide (2007) models. Both models are identifiable with a second-order approximation. Furthermore, analytical derivatives of unconditional moments, cumulants and corresponding polyspectra up to fourth order are derived for the pruned state-space.