Solvig® &ynamic stochastic general

€4

gerturbat®n: what Dynare does

1librivgn models using k-order

Willi Mutschler

UNIVI l’\]TAT 2%
TUBINGE i 1 %@Iﬁn

Dynare Model Framework

L [fe (yt—l’yv Y415 ut‘Qt)] =0
u, ~ WNQ,2)

t,s € [: discrete time set, typically N or Z
y,: n endogenous variables (declared in var block)

u: n, exogenous variables (declared in varexo block)

2. : covariance matrix of invariant distribution of exogenous variables (declared in shocks
block)

0: ny model parameters (declared in parameters block)
f: n model equations (declared in model block)

fo 1s a continuous non-linear function indexed by a vector of parameters €

3

L [fe (yt—l’yv Y415 ut‘Qt)] =0
u, ~ WNQ,2)

(2: information set (filtration, i.e. Q, C Q, ., Vs > 0)
E[- | €] : conditional expectation operator

» information set includes model equations f, value of parameters 0, value
of current state y,_,, value of current exogenous variables u, invariant
distribution (but not values!) of future exogenous variables u,_

» Q. =1/,0,y,_,u,u, . ~NQO2)} forallte 1, s> 0

» typically we use shorthand E,

Dynare Model Framework

L, ’f (yt—19 Yo Ye41o ut)] =

TIypology and Ordering
of Variables

Typology and Ordering of Variables

L, ’f (yt—19 Yo V41 ut)] = 0

» y, denotes vector of all n endogenous variables

Typology and Ordering of Variables

9N — nstatic i npred 4 nfwrd n nboth

static: appear only atf, notatf— 1, notats+ 1
predetermined: appear att — 1, not att + 1, possibly at ¢
forward: appear at t + 1, not att — 1, possibly at ¢

mixed: appear at f — 1 and ¢ + 1, possibly at ¢

Typology and Ordering of Variables

y* are the state variables: predetermined and mixed variables (n*"" ed)

y¥* are the jumper variables: mixed and forward variables (n¥"")

Typology and Ordering of Variables

declaration order: as you declare in var block

decision-rule (DR) order: used for perturbation

static
_ | predetermind| [predetermind ww [mixed
= mixed T mixed ot~ \forward

forward

10

Typology and Ordering of Variables

=

L, ’f (y;k_la Vo Vi ”t)

Perturbation Approach

General Idea

» scale u, by a parameterc > 0: u, = o 7,

» 77, is white noise with contemporaneous k-th order product moments:

SO =E{nQnQ...8n)

k times

» note that this implies Zg‘) — of 2;(7’0
» o is called the perturbation parameter

» non-stochastigc, i.e. static model: 6 = 0

» stochastic, i.e. dynamic model: ¢ > 0

13

General Idea

» find an invariant mapping between y, and (y* |, u,):

yt — g(yfil’ uta 6)
» g() is called the policy-function or decision rule

» 2(-)is unknown, i.e. we need to solve a functional equation

14

General Idea

Et [f(y;k_l’yt’y;ija uz)] — O

implicitly defines

gy, u,0)

15

General Idea

» compute the coefficients of a Taylor expansion of g(y* |, u,, 0) from a

Taylor expansion of E, [f (yt*_ 1 Ve y;‘jr " ut)] =0

» all evaluated at some known point; mostly non-stochastic steady-state

(i.e.c = 0)

10

Notation

U:i=u,u, =1u,,

Yo = Ve Yy =V Yy =Y
Yo 1= Y YE = ;Iiy yIE = ytﬁi%;
Vi 1= Vg1 Vi = ;il YIS yt?f

x :=y* denotes previous states

y, ¥¥, y**, X denote non-stochastic steady-state

A\

X :=y* — y* denotes deviation from steady-state
r—1

17

Notation

Yo = 8(x, u, 0) Yy " = 8% (x, u,0)

:g**(9u+96) :g**(,l/t_l_,a) —

18

Notation

dynamic model in terms of x, u, u, and o:

Ot v,) =£(x
= (. »)

= F(x,u,u,, o)

19

G(x,u,u,, o)
U

Notation

X
g(x, u, o)

g**(g*(x,u,0),u,,0)
U

20

linput vector for F and G]

linput vector for g**|

linput vector for f |

Objective

we know how to solve for the non-stochastic (¢ = 0) steady-state y by solving
the static model:

f3) = f(3*, 5, 5*%,0) = F(7%,0,0,0) = 0
which provides us with the non-stochastic steady-state for y, y* and y**

even though we do not know g(-) explicitly, we do know its value at y, y*
and y**:

y* = g*(y*,0,0) and y = g(*,0,0)

21

Objective

use a k-order Taylor expansion of f to recover the coefficients of the k-order
Taylor expansion of g:

y=y+gXxX+gu+go

1 2 2 1 2 1
‘|‘5gxx(je X 55) + ngu(je ® l/t) + nga(je ® 6) + Eguu(u ® l/t) + Egua(u ® 6) + Egaagz

| R) R) R) 6 3 | 3 R) |
+ggxxx()% RxXRP)?) + ggxxu()% RxXRP u) + ggxm(fc (0%)%)6 + ggxuu()% Qu@u)+ ggxw(fc X u)o + ggxmfcaz + gguuu(u Qu@u)+ ggmm(u R u®)o + ggu06u02 + ggmma?’

|
+—. ..
24

22

Objective

find the coefficients of the k-order Taylor expansion of g:

0*g(%,0,0)
Qx...d)g-ﬁu...dbg- Qa...&a

g times ptimes k—g—p times

gx@upgk—q—]? .

where 0 <p,g<kand0<p+¢g <k

all evaluated at some known point, mostly the non-stochastic steady-state

23

Underlying Assumption

» fand g are sufficiently differentiable so that the implicit function theorem (or its
Banach space generalization) applies.

» for fthis assumption is easily checked

» for g we typically can only ASSUME that g behaves similarly to f
(logical and credible, but not a formal proof)

24

Matrix vs Tensor Notation

Matrix vs Tensor Notation

higher-order perturbation
» based on multivariate version of implicit function theorem
» requires use of multidimensional chain rules
) many summation operators

» conventional matrix notation becomes unwieldy at k > 2 (unless you know what
you're doing)

» tensor notation and Einstein summation notation is more concise (but requires
getting used to)

20

Tensor Notation

» a tensor & is a multidimensional array, i.e. a collection of numbers,
where we use indices a; € [1,...,nj],1 < j <d, to access the elements in

the array

» formally, it is defined as a mapping

A {l,...n} X{l,...n} X... X 1,....,n;} =1
(al’ 25T aa’) = [‘Q[]al,az a,

which assigns the real-valued entry [] o, t0 each index

d1,00,...,

(ay, &, . ..,a,) as function value

27

Einstein Summation Notation

Einstein summation notation allows to compactly express terms in a
multivariate Taylor series expansion

» eliminates the summation symbols by making different use of the
location of indices

» same index used first as subscript and then as superscript of two
tensors implies summation of the products

28

Examples

Einstein Summation Notation

example for 1-dimensional tensors & (of size n) and A (of size n):

(), [BI" =Y [, [B],
|

a’1=

30

Einstein Summation Notation

example for 1-dimensional tensors & (of size n) and 9B (of size m), and 2-
dimensional tensor & (of size n X m):

(D], o [[B]" = Z Z (D], . [#], [B],

a;=1 a,=1

31

Einstein Summation Notation

example for 2-dimensional tensors & (of size n X m) and & (of size n X m):

[051052[g]0[10[2 — 2 Z [9]0‘1052 a1

a;=1 a,=1

32

Einstein Summation Notation

example for 1-dimensional tensors & (of size n), B (of size m) and € (of size
0), 3-dimensional tensor & (of size n X m X 0):

7, Ja@ege =Y Y Y (5, (), 1B],1%],

33

Einstein Summation Notation

example for 1-dimensional tensor & (of size n), 2-dimensional tensor & (of
size m X 0) and 3-dimensional tensor & (of size n X m X 0):

[F 1,y 0 [A1 D] = Z Z Z [F [, [P,

a=1 a,=1 oy=1

34

Faa di Bruno's Formula

Faa di Bruno's Formula

» identity in mathematics generalizing the chain rule to higher derivatives

» 1n Einstein summation notation:

[= il —Zk‘,[f]i D H[[/
rk T .« — a[r]ﬁ&[r]fz---ﬁ[r],,k — - 7! YICeﬂlkm 1 Cyleml t(c,,)
oG], s
NS g‘) énlq_[l el

» indices are compressed into bold vectors 7, :==7,...,7, ¥, == ¥y,-..,¥; and

b, :=y,.... P

36

k [
= Z, V23 [[A

ceM,;, m=1

let [F]. denote the i-th dynamic model equation, then is the k-th partial

derivative of equation i with respect to variables in r selected by integers 1,
where [r] : is the Tj—th element of r

37

. - ak [F]z - k [
[rk]Tk ._ m B Z CE%zan [Z’”lcml]f(c

[=1

let [f]l denote the i-th dynamic model equation, then is the /-th partial

derivative of equation i with respect to dynamic variables z indexed by
integers ¥, where [Z] , is the yj—th element of z:

33

| X [F]. k | l
F k l .— - — / l
| r]Tk a[r]ﬁa[r]fz...a[r]fk ~ [fz]yzceélknl;ll

[

let [z], denote the y,-th dynamic model variable, then is the |c,, | -th

partial derivative of [z], with respect to variables in r indexed by integers 7(c,,)

39

0" [F]

| k i
[Frk]lrk = a[r]ﬁa[r]fz..l.a[r]fk — Z [le] Z nl;[T()

[=1

combinatorics

3 is a so-called equivalence set (or Bell polynomial), which is defined as the set of all partitions ¢
of the set of k indices with [classes

» is the m-th class of partition ¢, | | its cardinality, and (-) is a sequence of 7's indexed by

» note: selection of 7(-) ignores indices in ¢, when they correspond to the perturbation parameter o

example: = 3 ({1} (2.3)} {{2} (1.3}). { {3} {1.2}},

C C C

40

Examples

F. 1 = 4 L, _ k i l y
O gt - & 2 It

[

first-order derivative of equation i with respect to the a,-th state variable:

| | - a[f]l a[z]?’l
] — l 71 p—
[I'Tx]a1 [f;]}/l[zx]al Z a[z]yl a[X]al

71=1

with .7/, =13 {1}

C

42

L
= e, - 2% Z I

[=1

second-order derivative of equation i with respect to the a;-th state variable and to
the f3,-th current shock variable:

[qu o p B [f] [qu]alﬁ T []CZZ];Yz[ZX]};Il[ZM]yzl

_ Z olfl; olal, Z i o’[f]; olzl, dlzl,
dlz],, dlx],dlulg dlz], dlzl,, dlx],, dlulg

1_1 1—1 2—1

with .77, =3 (12} ¢, Mo, =3 {1}. (2}

o

C C

43

. - ak [F]z - k i [,
O gt - & 2 It

[

third-order derivative of equation i with respect to the a,-th and a,-th state variables and to the f;-th current shock variable:

[Fxxu]lalazﬁl - [fz] ;1 [Zxxu] g T []ZZ] ; 172 ([Zx] }0/‘11 [qu] 222,51 T [Zx] }0/‘12 [Zx “] Zﬂl T [Zu]'?l [Zxx]2210!2) T [fZZZ] ;’17’2 [Zx] };11 [Zx]Z[ZM]Z

(ll(lzﬁl 73

— i a“f]z 63[2]}’1
-~ 0lz], 0lx], 0lx]4,0luly

yi=1

n, n i 215 "] 2157) 21,7
N ZZ ZZ ’[f], zl, oz, ol ol o dzl, Jlzl,
dizl, dlzl,, \ dlxl,, dlxlodluls — dlxl,, dlxl,0luls — dlulg dlxl,dlxl,,

_az

r1=1r=1
+ i i nZ UL Ok, iz, dlzly,
oIz 0121, lz], Olxl,, dlx],, olu

ylzl 7/2=1 }/3=1 =T el 2%) - ‘IBI

with .77, = 4 (1,23} }, = ({1} (231} {{2Y (1.3}). ({3} {1.2}), ¢, = 3 {1}, (2}, (3}

-

C C C a4 C C

. - ak [F]z - k i [,
S o, at e, = ol 22 L1l |

[CE m=1

third-order derivative of equation i with respect to the a,-th state variable and to the f,-th and f,-th current shock variables:

i — [71 [71 1% 71 72 71 72 [Vi[> 120~ 173
[Fx””]alﬁlﬁz [fz]h [quu]alﬁbﬁz_l_ []Zz]m’z <[Zx]0‘1 [Zuu]ﬁlﬁz T [Zu]ﬁl [qu]alﬂz T [Zu]ﬁz[zxu]alﬂl)—l_ [fZZZ]717’2}’3 [Zx]al [Zu]ﬁl [Zu]ﬁz

— i a“f]z 03[2]},1
4~ 0[z],, dlx], Olulgoluly,

71=1
n n ok or .- - - - . 7
N ZZ ZZ 0°[1, olzl, ozl | lz], ozl | oz, ozl
dlz], dlz], \ Olxl, olulsoluls oluls Odlx],oluls oluls dlx], dluls

r1=1r=1
+ i i nZ LY 9zl dlzl, dlzl,,
021, 0121, AIz],. ol oluly, ol

with .77, = 4 (1,23} }, = ({1} (231} {{2Y (1.3}). ({3} {1.2}), ¢, = 3 {1}, (2}, (3}

-

C C C 45 C C

0" [F]

| k
[Frk];k - = m = Z [fzz] Z H[Z,A |]T()

[=1

third-order derivative of equation i with respect to the ;-th state, to the ,-th current shock and to the ;-th future shock variables:

Pl =D [z 0+ ([z L N R O EM L EMR L)+[fw] [ENAERAEA A
Z o), ol
) yi=1 Z]}/l a[x]ala[u]ﬁla[u+]5l
+i Z L), (o, old, oo, old, o dzl, O,
St e 01zl 0Lzl \ 0Ly, Olulyluyls, — Oluly, Olxly0lusls, — Oluyls, Olxly,oluly,
= 0’ £, dlz], dlzl, odlzl,
+2 2 Z dlz],0(z],.0|z] ﬁ[x]y ()[u]y olu,]
yi=17,=1 ;=1 Y1 Y2 Y3 aj P +10;
with .77, ;= { {123} ¢, 7, = 3 ({1} {237} (12 (1.3} L. {3y (121), ¢, 7. = 3 {1}, 12}, 3}

-~

C C C 46 C C

i ak [F]z k i [
[Frk]Tk ._ m B =3 []CZZ]},Z Z H [Zrl

[CE m=1

third-order derivative of equation i with respect to the a;-th state and to two times the perturbation parameter:

[Fm];1 = [fz];1 [ZMG]Z;1 +[fzz];ly2 <[zm]g[11 [z 17 + [zm]g1 [z 17 + [zx]g1 [z%]?z> +| JCZZZ];%[ZX]Z;1 [z]7[z,]7

Olal,

~ Z olf],
o’ 0:2]},1 6[x]a1d666

+i i aZ[f]l (a2[2]71 a[z]h 4 02[2]},1 a[z]h 4 a[Z]Vl az[z]h)
d[z]},ld[z]},2 6[x]a106 0o 0[x]aldo 0o 6[)6]0{1 doodo

vi=1 y,=1

<

n, 1 63[f]i a:z:h a[z]h a[Z]%
+ Z Z Z dlz], dlz], dlz],, dlx], oOo Odo

_al

ni=1r=1r=1

with .77, ;= { {1,23} ¢, = 3 {{1Y (2.3} {((2) (1.3}). ((3) (1.2}). ¢, =3 {1},12}, (3}

-~

C C C C C

Note that the selection of 7(c,,) ignores indices in ¢,, when they correspgnd to the perturbation parameter o.

1

/m
()

Tensor Unfolding

Tensor Unfolding

» we can also express all tensors [F ,,k]ik by a matrix F .

» idea is to map a multidimensional tensor to 2-dimensional matrix
» rows correspond to model equations 7, columns correspond to specific ordering of individual tensors

» natural approach for columns: let all 7, indices run from 1 to n,. and store computed values sequentially in rows and
columns

» example column ordering for k = 3 and n, = 3:

(1,1,1); (1,1,2); (1,1,3); (1,2,1); (1,2,2); (1,2,3); (1,3,1); (1,3,2); (1,3,3);...
(2,1,1); (2,1,2); (2,1,3); (2,2,1); (2,2,2); (2,2,3); (2,3,1); (2,3,2); (2,3,3);...
(3,1,1); ; (3,1,3); (3,2,1); (3,2,2); (3,2,3); (3,3,1); (3,3,2); (3,3,3);...

0 [FI;s
> 0[r]50[r],0[r],

would be the 5th row and of matrix F .

49

Tensor Unfolding

» running loops for unfolding is computational inefficient, alternative:
» basic matrix multiplication rules

» Kronecker products

» permutation matrices which perform the necessary reordering such
that tensor summations are in accordance with matrix multiplications

» Dynare uses a dedicated and quite etficient Multidimensional Tensor
Library written in C++ for k > 2

50

Examples

Tensor Unfolding [F] 511

[Fd, = £]!

FX —]L;ZX

» basic matrix multiplication rules for matrix f, and vector z,

52

Tensor Unfolding [F,, I, ,

[qu]iﬁﬁl - [fz];ﬁ [qu]};ﬂl T []CZZ];le[Zx]}0/611 [Zu]yzl

qu :fzzxu +fzz (Zx X Zu)

» Kronecker product (z, ® z,) unfolds [z,]”! [Z”];z correctly, because it has
1 1

required (a;, p;)-ordering

» basic matrix multiplication rules as both z,, and (z, ® z,) are vectors

ZX U

53

Tensor Unfolding [F

AU 0‘10‘2,51

|

vl = L L2

a0 P

+[fZZ]}’ﬂ’z (+ +[z,17) [zxx]g;m)

VA U EA U FA T RR

717273

Fr =+ e +(2,.05))+ (202,837,

54

Tensor Unfolding [F

AUy 0‘2,5 1
) terms contain same values but are summed in different ordering
> is consistent with (a;, a,, #;)-ordering, can be unfolded by
> is not consistent with (@, a,, f#;)-ordering, can be unfolded by

» P, ,1s a permuted identity matrix

=1+ P

X_XU 55

y P2

X_XU

Tensor Unfolding [F

AU 0‘10‘2,51

» green tensor is not consistent with (a;, a,, f#,)-ordering, but

» due to symmetry | fzz]f,ﬁ,z[z]y1 (2,)"

2512%)

o V2 O e

0410%)
» which is consistent with (@, a,, #;)-ordering

» can be unfolded by fzz(zxx X Z,,,)

56

Tensor Unfolding [F,,,I,, ; ,
X1P1P2

l _ l 14
Faudg,p,p, = V2, 2l
+ [(71 %)
[fzz]mz 12, of [Z””]ﬁlﬁz T T)
+ l 71 %) 73
AR EA I EA R

quu :fZZxxu +fZZ ((Zx & Zuu>+) +fzzz (Zx X Sy X Zu)

o57

Tensor Unfolding [F xuu]fxlﬁlﬁz

» green tensor is consistent with («, f;, f,)-ordering can be unfolded by fzz(zx X ZW)

58

Tensor Unfolding [F xuu]fxlﬁlﬁz

4 terms contain same values but are summed in different ordering
> is not consistent with (a;, a,, #;)-ordering, but due to symmetry of [fzz]; = | fzz]; 7 it
172 271
can be unfolded by
> is not consistent with (a, f;, #,)-ordering, but due to symmetry of [fzz]; = /..] ; 7 it
172 2/1
can be unfolded by
» P, ,1s apermuted identity matrix
y P2 =1+P
XU_U XU_Uu 59

Tensor Unfolding | XW+] o, B,

LF = |/,] 123, 1

AU 1,5151 oy P10

T a0

+ [fzz]m2 (+ [2,J} (2,17 +)

HE e,)

Y172Y3

Fow, =20, Tz (+ (zm+ R z) leu Lt) +7... (Zx Rz, X Zu+)

60

Tensor Unfolding | XW+] o, B,

> is consistent with (a;, #;, §;)-ordering can be unfolded by

» green tensor is not consistent with (a;, f;, 6,)-ordering, but

)y due to symmetry of [f.1 >~y [Zm+]7/1 [Z] - can be unfolded by (z,, ® z P

Xu,_u

) is not consistent with (ay, f, 0,)-ordering, but

, due to symmetry of [f,]! can be unfolded by

Y1v2’

o1

Tensor Unfolding [F,,,];

Fuooly, = LT, ool

L

7172

L

717273

(+ 12,2017 + 12,105,007)

[z,,,]zl1 [7,1[z,]"

Fuoo = FZuoo+ e + (0, ©5) P) e (2,8 2,82,)

62

Tensor Unfolding [F,,,];

) is consistent with (f3,)-ordering can be unfolded by

p green tensor is just a product ot vectors, we could simply use Kronecker product, but
to keep in the flow of the algorithm:

Uo O

y due to symmetry of [f.], , [z,,]" [z,]”” can be unfolded by (z,, ® z,)P
|

y P2 =P +P =2

Uo 6 =~ U0 O Uo o

03

Perturbation Approximation

Algorithm

objective is to find the coefficients of the k-order Taylor expansion of g:

~ 0¥g(%,0,0)

Sxiurot=4p - 0X...0x-0u...0u- 0o...do

g times p times k—g—p times

where 0 < p,g<kand0<p+¢g <k
algorithm is recursive:

e find all coefficients for k = 1, then find all coefficients for k = 2, then find all
coefficients for k = 3, ...

65

First-order Approximation

First-order Approximation

p first-order Taylor expansion of the i-th equation of F around 7 = (x,0,0,0)
1S 1n tensor notation:

[F(O]' = [FOT + [, []1% + [F,], [ul" + [F,'o + [F,] [u]”

+51

p taking conditional expectation and setting it to zero yields:
0= [F(P' + [F,I, [X1 + [F,]; [ul" + ([F(,]i +1F, 1 [zmﬁ) o
1

» note that [F (f)]i = (0 and [Z(l)] * is the 5, entry of V) = E{n.. |}

67

First-order Approximation

0 = [F,I, [X]" + [F,], [l + ([F(,]i +1F, 1 [2<1>]51> o

» this equation needs to be satisfied for any value of X, u and o

» necessary and sufficient conditions to recover the first-order partial
derivatives of g with respect to x, u and ¢ can be retrieved from:

l

Fl =0, [F]. =0, [F]'+|F.| [EV]"=0

J

63

First-order Approximation

X Uu

F]; =0, F];1 =0, F,]" + [FL O] =0

1

computation is done in sequence:
) recover g,
) recover g,

) recover g,

69

First-order Approximation
Recovering g.

g(x, u, o)
G(x,u,u,,o)
Uu

Reminder

X
g(x, u, o)

g**(g*(x,u,0),u,,0)
U

71

linput vector for F and G]

linput vector for g**|

linput vector for f |

Recovering g.

Tensors Matrix

831,
lw,] oy = 0
0

(G,Il, = [g5*1, W = [gi*] (¥
o] 1 a; P1 a;

1],

[F, =L£] [

(2

Recovering g,

F,, = 1 [= el + U1 o) + Ul L8340 1gE17) = 0

where | Jy] fxl, | fyo] ; ,and [fyik*] ;f are the first partial derivatives of equation i
- |

of f with respect to [y*], [v],0 and [y**]

P respectively.

pY

Tensor Unfolding yields the corresponding matrix representation:

Fx :fZZx :fyi‘ +fyogx +fyjr‘<*g)>ck*g;< =0

73

Recovering g.

0, = U, Ty = U, + U Jadi + U] [e = 0

o TP
Fx =fzzx :fyf +fY()gx +fyj:*g;€k*g;k =0
this is a quadratic matrix equation, solving it is equivalent to finding a

solution to linearized rational expectations models for which different
algorithms have been proposed.

Dynare uses algorithm outlined in Villemot (2011), see other presentation.

4

Perturbation Matrices

important auxiliary perturbation matrices:

0 : f**g** : 0
—— * X ° ——
A=f + | AR
0 X static anspred anfwrd

0 : 0 R A
B _ —— —— y-|—
R ansmtic anpred
sfwrd

lgs

First-order Approximation
Recovering g,

Recovering g,

Tensors Matrix

8.1,
Wl =1 0
0

I [kl D1 _ okl [o%1P
[G”]ﬁl = L&]¢1[w“]ﬁ11 = 1&:]Pl[g”]ﬂi

0
[gu]ﬂl
[2,] B [Gu]ﬁ1

g,

[F), = £] [2]

’r’

Recovering g,

FJ, = A1) = U L8y + el L83 1T1gE 1 + £,

+ pl

where [f] 21 is the first partial derivative of equation i of f with respect to [u]; .

Tensor Unfolding yields the corresponding matrix representation:
Fu =720 =18t I8 8 +Ju = A8+ 1, =0

taking the inverse of A yields g, :

Su= " A_lfu

/83

First-order Approximation
Recovering g_

Recovering g_

P— P— P— P—

Tensors

0
L5], w,] =
0

G]z — [g;x;*];ﬁl[wm]?ll — [g;l;*]:m[lu]gl

u
+51

(G,1' = (g1, [w,1? = (3] (821" + [

0 0

0 o= | &
Guds | |16,

u
+51

0 0

F,) =[f] [2,]

s)

[F,]' = [£] [2,]"

80

Recovering g_

0 = [F,I'+[F,I5 [V = [£]} [z,]" + [JCZ]QI[ZM]QI[Z(D]‘Sl
0 = [fyo];?[ga]p? + [fy;rk*];fu<[g;k*]gf[8;k]pl + [8(>;k>k]p1+> T [fyf*];ft[g;k*]gfr[z(l)]él
Tensor Unfolding yields the corresponding matrix representation:
— 1) _ 1
0= Fa+ Fu+2() _fZZG +fzzu+z()
0 = f,,85 + fy (85785 + 85%) + £:85 =V = (A + B)g, + fsngii ¥V

taking the inverse of (A + B) yields

o= 4+ B (fapen)

because the first moment XV is zero by assumption, we get: g_ = 0

31

Certainty Equivalence g_. = 0

when we derived the optimality conditions (aka model equations) agents do take into
account the effect of future uncertainty when optimizing their objective functions.

BUT: the first-order approximated policy function is independent of the size of the
stochastic innovations:

Yt = gxy;k_l T Euty
future uncertainty does not matter for the decision rules of the agents at first order

certainty equivalence is a result of the first-order perturbation approximation, we can
break it with e.g. higher-order perturbation approximation

82

Second-order Approximation

Second-order Approximation

second-order Taylor expansion of the i-th equation of F'around 7 = (X,0,0,0) is
In tensor notation:

[F(N]' & [FOI' + [F, 817 + [F,], [l + [F, 1. [0,]” + [F,]'o

+51

I i a1 ; Bir, P i Sir,, 10 i
+ ([Fodl, o (KR + [F, L, [l [l + [F, 1 [y 2wy > + [Fppl o0)

75,6,

2 i A p] A) I raja] f)] f l)
o Fall, R0 + () 81900 + [F L 8170+ (F) [l + (F,) o+ [F,) ()

XU XU uu u,o
alﬁl + a151 + ﬂlél +

34

Second-order Approximation

taking conditional expectation and setting it to zero yields:

0 = [F(A]' + [F,I,, [{1 + [F,] [u]" ([F(,]i [F,.] [zmﬁ)a

U
+51

]i [2(2)]5152

76,6,

1 / AT [AT i i l 1)7%1
+= ([Foll, [R1R1 + [F,,] [l [u]l > + ([Fw] + [F, +2[F, 1" [Z]) 00)

+% ([Frol,, 5 [817 [l + ([Fw];l + [F,, 1 [2“)]51) [£]%6 + ([Fw]ﬁé + [F,] [2<1>]51> ulo)

a0 P16,

note that F (f)]i = 0 and [Z(l)] ’ is the 5, entry of XV = E {5, ,}and [2(2)] ’® denotes the covariance between
[Vh]él and :ﬂt]éz

this equation needs to be satisfied for any value of X, # and o

85

Second-order Approximation

necessary and sufficient conditions to recover the second-order partial
derivatives of g with respect to xx, xu, xo, uu, uc and oo:

forg, :0 = [Fmi + [qu]i =] 1
o +

for g ... 0 = [F xx] ;az 6,
for g = [Fuu] ;Lﬁz for 8o = [FLm] ;1 ~+ [Fuu+]; i [2(1)] o
1¥1

l

for Exu- = [qu] o for g 0 — [FGO_ i n [F]i [2(2)] 0,0,) [F]i [Z(l)] 0
010,)

U,o
1

86

Second-order Approximation
Recovering g

Recovering g,

J—

Tensors Matrix

[gx]

a1,
[Wxx] aa, 0
0

[Gxx]lalaz - [g;‘xj*];l [Wxx]ilaz T [g;x;;}j]zblﬁbz[wx]fll [WX]fj

— [g;k*];l [g;kx]gllaz 4 [g;kj]lp1 pz[gff]f;l Fa]Zi

0
(8l
142

[G]

XX o0y

0

[F xx] fxlaz - [fz] :’ I [Zxx] }0/611 05) + [fZZ] 7i/1 V2 [Zx] }0/511 [ZX]}O?Z

383

Recovering g,

[Frod =L,] [zl

Ao, 2512%)

i N[, 2 —
T [fzz]}’l}’z[zx]“ll [Zx]azz =0
Tensor Unfolding yields the corresponding matrix representation:

= f.20c + 1., (Zx X zx) =

developing terms, we can simplify this using perturbation matrices A and B:

Ag+Bg (85 ®g) = —f., (2, ® z,)

89

Recovering g,

Ag+Bg (8 ®gF) =—f, (2. ®z)

this is a Generalized Sylvester Equation for which Dynare uses specialized and
very efficient algorithms

90

Recovering g,

Ag., + Bg.. (g5 @ g*) = -

contains only first-order terms

can be computed by evaluating Faa di Bruno’s formula for [F]a .
(G, . = L] 851 + 85T (810 [g¥)? =0
0 0
[gxx] a o 0
K cond] 2l —
0{1062 [xx]alaz O
- O —_ _O_
cond condy’1 [y V2 — [Y g
Fer), =LA 1+ [edtles =) [0l

» Tensor Unfolding: F)f)?”d —

91

and |G,
2

o,

0412%)

conditional on [gxx].

041%%)

= 0:

Second-order Approximation
Recovering g,

Recovering g,

P— P— P—

Tensors Matrix

S
8uucly

Wuddgp, = |0
0

L — [o%%] ¢, %k]! ¢, b,
(Gl 5, = 1857y Wl g, + 18001, o Wl WL

— [ok*]! [o* 1P k] %1P1[o P2
[8:71) [8uuly p + 18571,) 18a 1,180 1

0
[g““]ﬂlﬂz

[Z] —
uul g g3
v [G”“]ﬁlﬂz

0

[F““];ﬁz B [fz];ﬁ [Z””],gllﬂz t [fzz]j’ﬂ’z[zu];ll [Z”],gzz » F uu =fzzuu +fZZ (ZM ® ZM)

93

Recovering g,

i l 71 i 71 V2 —
Fulyy = AL 20, + LT [51005,07 =0
Tensor Unfolding yields the corresponding matrix representation:

Fuu :]L;Zuu +fzz (Zu X Zu) = 0

developing terms, we can simplify this using perturbation matrix A:

Aguu — = (fyjﬁ*g;ckx* (g;l; X g;I;) +J;Z (Zu ® Zu))

94

Recovering g,

Aguu — = (fyjf*g;kx* (g;tk ® g;I;) +fZZ (Zu ® Zu))

» note that the right-hand side contains only objects that are already
available from the first-order approximation and previously computed g, ,

» taking the inverse of A yields g,

95

conditional on [gW]

(Gemy) = [g#+) k17,

cond
[Zu]ﬁ1ﬁz

cond®
|F,,,]ﬁﬂ

PP

0

Bl

[G

algp,
0

= 0:

[f] [cond

» Tensor Unfolding;: beft”d —

Recovering g,

/&guu — =

can be computed by evaluating Faa di Bruno’s formula tor [I

+[gx]

[(;cand

uu

0
0

0

5 T [fZZ]

]ﬁlﬂz

Jadpla gy = Ul (5517 (@018 + (L

[gif]p 1 [g;‘:]pz = [5*])

k1P1[ok 1P2
[gu | i Fol i

[zu]“1 [z,,t]gz2

]ﬂﬂ

and [G,,] lﬂl 5

Second-order Approximation
Recovering g

Recovering g,

P— P—

Tensors Matrix

S
85l
Walgp =10
0

L [ox%] b, k! iy 122
[Gxu]alﬁl [gw]¢1[qu]alﬂl T [gww]¢1¢2[wx]al [Wu]ﬂl

— [o¥*]! [o% 1P1 k! %1P1[ok 1P2
18571 [8xuly 5 18571, 185, 1841y

0
[gxu]alﬂl
[qu]alﬁl - [G]

A ayp

0

[Fx u] fl 14 - [fz] j’l [qu] }0/511,51 T [fZZ] ;1 V2 [Zx] }0/‘11 [Z”]Z

98

Recovering g,

l — l Y1 [V1 V2 —
[qu]alﬂl [fz]?ﬁ [qu]alﬁl T [fzz]}’ﬁ’z[zx]al [Z”] 1 0
Tensor Unfolding yields the corresponding matrix representation:

qu :fzzxu +]2z (Zx X Zu) = 0

developing terms, we can simplify this using perturbation matrix A:

Agxu — = (fyjﬁ*g;ckx* (g;ck X g;I;) +J;Z (Zx ® Zu))

99

Recovering g,

Agxu — = (fyjf*g;kx* (g;ck ® g;I;) +fZZ (Zx ® Zu))

» note that the right-hand side contains only objects that are already
available from the first-order approximation and previously computed g, ,

» taking the inverse of A yields g,

100

conditional on [gxu]; p
171

(GE" ™, 5 = L8] (851,

cond
[]051,51

cond®
[Fegndy) =

0

[gx u] a1/

[Gxu] a1/

0

= 0:

[f] [COnd

» Tensor Unfolding;: F)fg”d —

Recovering g,

Agxu — =

+ [g5]

0
0

G
0

5 H LD

can be computed by evaluating Faa di Bruno’s formula tor [F xu]; 5
171

a

Nz [z, Iy = [] [gx *]p1 Lei 1 el + [fZZ]

&1 [gif]pz = [&5*])

p P
v,

Y Y
Nzdg [zly

and [Gxu];1 5

Second-order Approximation
Recovering g

102

Recovering g

Tensors

01

[W_xu+]a 5 — O / [Wxg]al —
1“1 _O_

(G Y, = L8 T, D I + (&5, w5 Tw, 172

a5, U5,
— [g**] [g*]Pl[]‘//1

(G 1 =[g**T, W, 1% + [g¥*]. [w]%[w,]?
a ¢1 a ¢¢ a

= [gF* 1 [g10 + (g5 | (g1 [821 + [83+1) [8¥1))

0 0
0 (8561,
G | Bl = 16,01

xXu
T a0

0 0

- UT), T

= [f;] [zl7 + [f;z] Nz 2517

103

Matrix

(g)

0
L 0)

G, = 8%y, + 855 (W ® W,)

+

= gl <g;ck X Iu)

G,y = 815 Wyy + gk (W, @ W)

= gitgh 4 gt (g @ g¥) + ghtgk

(0) (0)
0 8xo
G |G

XU, xXo

Recovering g

11

i 0 j i i
Fo| +|Fo.| [EV"=I fz]yl[zx(;]g1 + [ﬁz]ylyz[zx]gll[za]yz + Dy, =0

< a0

N - 4

=5[Dlo1];1

Tensor Unfolding yields the corresponding matrix representation:

an T qu+ (Ix ® Z(l)) =fzzx0 +fzz (Zx ® Za) + DlOl =0

=:Dy

developing terms, we can simplify this using perturbation matrices A and B:

Agxa + ngagx — = (fyj‘:*g;kx*(g;ck X g;k) +fzz (Zx ® Za) + DlOl)

Z

Recovering g

Agxa + ngagx — = < fyj’:*g;ckx*(g;k ® g;"k) +fzz (Zx ® Za) + DlOl >

» this is a Generalized Sylvester Equation

» note that the right-hand side contains only objects that are already available from previously
computed terms

e but due to certainty equivalence: g¥ =0, z,. = 0
e D,y = 0 because) = 0
» therefore: g, =0

» a second-order approximation does not imply a correction for uncertainty in terms which are linear in
the state vector

105

Recovering g

Agxa + ngagx — =

can be computed by evaluating Faa di Bruno’s formula for

(Gl = [T [g1) + (g5 [0 [eH1” + (g1 [231) = 1) ¥ [gk 1

0 .
F 0

[cond] * —
[Gm]al (Gl
o0 | L O _

A A 0 N] e e Ve S A S M e G U U EN A R

» Tensor Unfolding: F)fg”d —

> can be computed by evaluating Faa di Bruno's formula for

available

106

conditional on [gw]; = 0:
1

directly as all terms are

Second-order Approximation
Recovering g,

Recovering g,

Tensors

o
Wiy 5, = 8 Wil =

]¢2

u
+51

L [pkx] b L b
(G, o = 1857y W I+ 1855505 4 Il L

— k! *7P1 1
i [gx”]Plllfl[gu]ﬂ1[1”]51
[Guoly, = [85*1), IWuol§! + [giil,, | W l5 w1
oS O T Wiyt b O

— ekl * 1P1 k]l k7P ok P2 k]l *7P1
8571, [8uoky + (8551,) L8l (8517 + (85571 (84T,

0 0
0 [8ucly,

G Nzl , =
[W+]ﬂ151 4 [Gua]ﬁ1

0 0

I6)
n

[Fuu+]lﬂl51 B [ﬁ];l [Zuu+];1151 T [féz];ﬂ’z[zu];ll [Z

(Fusly, = LA [l + L] [20012,]"

108

Matrix

0

G, = 83 W, + 835 (W, @ w,.)

= gl <g§: X Iu)

G,s = 85%w,, + g% (w, @ w,)
= giHgh 4 gt (gF @ gF) + gk
(0)

Suec
G

uo

Recovering g,

11

i | (D) 0y — l 71 l 71 Y2 [
F o 5+ | Fu, . =] £ [2uol) + U] (207 12,1 + [Doy 1y, =0

N - 4

:3[D011];31

Tensor Unfolding yields the corresponding matrix representation:

Fua_l_ Fuu+ (Iu ® Zﬂ)) =fzzua+fzz (Zu ® Za) T DOll =0

=:Dy14

developing terms, we can simplify this using perturbation matrix A:

A8 = — (e (G55 (gE ® &) + giikg) + £ (2, ® 2,) + Doy)

109

Recovering g,

Aus = — (free (85(gi ® 85) + 8%578iF) +£.. (24 ® 2,) + Do)
taking the inverse of A gives us g,

note that the right-hand side contains only objects that are already available from
previously computed terms

but due to certainty equivalence and =) = 0 we get

8uo =0

second-order approximation does not imply a correction for uncertainty in terms which
are linear in the innovations vector

110

Recovering g,

Agua=—<)

can be computed by evaluating Faa di Bruno’s formula for conditional on
18,1 5 = 0:
[Geomd) = [g*1 [gi)0 + (g1 [@F1Igsl + [g51) (g1 = @51 [gF1[gsV + [g51) [g51)

o -y

cond] [gua]ﬂ L — 0 J

I/tG N con

b [Gyo] B, [Gus B
0 0

il = LAY, Ty 4 LLal] (2,0 = Ul (18821, [8310as1 + (g, (517) + LA, (o)

» Tensor Unfolding: F¢2"d =

> can be computed by evaluating Faa di Bruno’s formula for directly as all terms are available

111

Second-order Approximation
Recovering g__

Recovering g __

P— P— P—

Tensors

Matrix

o o
[(Weel = ; (w6l 5 _8_ Wy] 55, _8_

[(Gool' = [85%1,, W™ + (83551, [Wel”[w,]"
= (g1 [g5,1" + (8571, | [8517 (8517 + [855%1) [8517 + (85571 [8517 + (8751
I — [o%k*]! ¢ XA ¢, b,
[Gu+6]51 [gw]4’1[Wu+0]51 T [gww]¢1¢2[wu+]51 [WG]

— [okk]! *1P1 1 kk]l 1
- [gxu plwl[go'] [Iu]51 + [gug]wl[lu]él

L — [okx]! ¢ %k ¢ b,
G 1, s = [T, D 100+ g1, D, 10D,

010, 010 0,

_ k! 1 %)
B [g””]l/flllfz[lu]51 [Iu]52

113

Recovering g __

Tensors

Matrix

[Z’/‘+b‘+]5152 — [G]

u,u
++5152

0

[Fool' =] [206)" + [£] [2,1"[2,1"

F(m =fzzaa +fzz (ZG X Za)

Foo=120F] (zu+ 03y ZG)

]}’1 [Za])

u
+51

[Fuoly = U1, ol + £, T2

Uu,o
+ 51

Fu+u+ = fzzu+u+ + 1. (zu+ X zu+)

(Fuu, o =LA [)0+ T2, 000,17

Uiy 5152 Uiy 5152 7172 Uy 51 Uy 52

114

Recovering g __

[Fool +1F, 0 EO1420F, O = (A1 2ol + £ (20121 + Dol + [Egea] = 0

U, u u,o
+4+75.8, +075,

[D 002]i [EOO2]i

Tensor Unfolding yields the corresponding matrix representation:

U U,

Fopot F, 29 +2F, 2V =fz +f. (2,®2,) + Doy + Egpp = 0

D 002 EOO2

developing terms, we can simplify this using perturbation matrices A and B:

(A T B)gaa — = (fyjﬁ* (g;k;k(g;k X g?) + zg;cka*g;k) +fzz (Za & Za) T D()()2 T E002)

115

Recovering g __

(A T B)gaa — = (fyjrk* (g;k;k(g;k ® g;k) T zg;cka*g;k) +fzz (ZG ® ZG) T D()02 T E002)

note that the right-hand side contains only objects that are already available from
previously computed terms

due to certainty equivalence, 2! = 0, and previously computed terms this simplifies to

(A + B)gda = — (fyfx;*g;ku* +fy_>|_x<>x<y_>x|_<>x< (g;f* X g;li*)) 2(2)

taking the inverse of (A + B) givesus g,

as g_.1s nonzero, a second-order approximation adds a level correction for uncertainty to
the approximated decision rule of agents (this breaks with certainty equivalence!)

116

Recovering g __

(A +B)g, =~ (FoA)

can be computed by evaluating Faa di Bruno’s formula for conditional on

lg..]' = 0:

COﬂdlz k! * 1P1 skl kNP1 ok P2 kk]l *7P1 kP — [okk]! *TP1[ok P2 k]l *7P1
(G) = [g) [g) + g1, 1221851 + 2Ll (21 + (831" = [gi51) (821 [g31” + 2051 [82]

_ 0 _ _ 0 _
[Zcond] — [gUO'] — 0
" T 1G| T |16

Feg ' = LA [l + L 2ol ol = Ul (Le1, [8211g3V> + 2Agi T, 821" + L] (5,115,)"

» Tensor Unfolding: F gg’”‘d —

> and can be computed by evaluating Faa di Bruno’s formula for directly as all

terms are available

117

Third-order Approximation

Third-order Approximation

Necessary and sufficient conditions to recover the third-order partial derivatives
of g with respect to xxx, xxu, xxo, xuu, xuo, xco,uuu, uuc, ucc, and coo:

[gxxx] 0= [xxx] [gxua] 0= [FXMG]aﬂ + [quu+] [2(1)]

a0t /101

[Suad 0= [Fuully 5 8e00) 10 = [Fygpll, + [Fu)] [ZO1 % +20F, I (201

(8l 10 = [Foull, ;5 Suie) 20 = Fuuglly + F Y, 1201

(el 0= [Feal,, 5 Buoe) 0 = [Fugglly + [Fu 1, EP1 420, 1 (201

ool 0= [Fll + Fa] IZOT [g,0,1:0 = [l 4 1) ZOP™ 431F,, 0 [E2P% 43, I =

Q10,04 Uttt 5,6,6, 0755,

119

Third-order Approximation

Agxxx + ngxx (g;ck X g;cX< X g;ck) — = F)f)(c))’c/ld

Aguuu = — Fon

uuu

Ao = = Fion

XUU

Ao = = Fiit

i
A8roo + BEroolt = = Fiod = Doy — Eyp
Ayue = — F)f%d — Dy
A8roo + BEroolt = = Fion? = Dyop — Eyp
Ao = = Fron® = Dy

(A + B)g,ps = — FE2 — Doz — Eg

(0J010)

120

Third-order approximation

8ure = U 8uuo = U, 8ruo = 0
no correction for uncertainty in terms which are quadratic in x and u

Zvoo F U 8uos 7 0

correction for uncertainty in terms which are linear in x and u

8660 7 0

correction only iff third moments ¥3) £ (0 (not in Dynare)

121

k-order Approximation

k-order Approximation
0 = [sz] ;i for g..
0= [qu] .for g.i;and j > 0

Do, = [F i), [Z01%

Fuol,, + Dyl + [Ej] for g =1 /1
[E k]aﬂ — Z (m) [inujufgk_m]aiﬁjﬁm[Z(m)]am
' m=1

0= [Fx ufak] . T [Dl]k] + |E]k] for Exinick

x; J

0=|

0 = [F,|' + D]+ [E] for g,

123

Order of Computation

recover g,
for j=1:1:(k-1)
for i=(j-1):-1:1
1eCOVer g ki, i ii
end

recooer g i—jsi

end
for i=(k-1):-1:1

recover g i k-

end

recover g i

124

Computational Remarks (as of Dynare 5.1)

» order=2, we use unfolded matrix equations and optimized mex code

» order>2, we use multi-threaded and multidimensional tensor library implemented
in C++

¢ allows for folded /unfolded, dense/sparse tensor representations
¢ implements Faa di Bruno's formula very etficiently
® updates conditional Faa Di Bruno's formulas etficiently

» might change in future version to make use of more optimized code and /or Fortran
re-implementation

125

