Solving dynamic stochastic general equilibrium models using k-order perturbation: what Dynare does

Willi Mutschler

Dynare Model Framework

$$E\left[f_{\theta}\left(y_{t-1}, y_{t}, y_{t+1}, u_{t} | \Omega_{t}\right)\right] = 0$$

$$u_{s} \sim WN(0, \Sigma_{u})$$

 $t, s \in \mathbb{T}$: discrete time set, typically \mathbb{N} or \mathbb{Z}

y: n endogenous variables (declared in var block)

 u_t : n_u exogenous variables (declared in *varexo* block)

 Σ_u : covariance matrix of invariant distribution of exogenous variables (declared in *shocks* block)

 θ : n_{θ} model parameters (declared in *parameters* block)

f: n model equations (declared in model block)

 f_{θ} is a continuous non-linear function indexed by a vector of parameters θ

$$E\left[f_{\theta}\left(y_{t-1}, y_{t}, y_{t+1}, u_{t} | \Omega_{t}\right)\right] = 0$$

$$u_{s} \sim WN(0, \Sigma_{u})$$

 Ω_t : information set (filtration, i.e. $\Omega_t \subseteq \Omega_{t+s} \, \forall s \ge 0$)

 $E[\cdot | \Omega_t]$: conditional expectation operator

- information set includes model equations f, value of parameters θ , value of current state y_{t-1} , value of current exogenous variables u_t , invariant distribution (but not values!) of future exogenous variables u_{t+s}
- ▶ $\Omega_t = \{f, \theta, y_{t-1}, u_t, u_{t+s} \sim N(0, \Sigma)\}$ for all $t \in \mathbb{T}$, s > 0
- \blacktriangleright typically we use shorthand E_t

Dynare Model Framework

$$E_t \left[f(y_{t-1}, y_t, y_{t+1}, u_t) \right] = 0$$

$$E_t \left[f(y_{t-1}, y_t, y_{t+1}, u_t) \right] = 0$$

 \triangleright y_t denotes vector of all n endogenous variables

$$n = n^{static} + n^{pred} + n^{fwrd} + n^{both}$$

static: appear only at t, not at t-1, not at t+1

predetermined: appear at t-1, not at t+1, possibly at t

forward: appear at t + 1, not at t - 1, possibly at t

mixed: appear at t-1 and t+1, possibly at t

 y_t^* are the state variables: predetermined and mixed variables (n^{spred})

 y_t^{**} are the jumper variables: mixed and forward variables (n^{sfwrd})

declaration order: as you declare in var block

decision-rule (DR) order: used for perturbation

$$y_{t} = \begin{pmatrix} static \\ predetermind \\ mixed \\ forward \end{pmatrix} \quad y_{t}^{*} = \begin{pmatrix} predetermind \\ mixed \end{pmatrix} \quad y_{t}^{**} = \begin{pmatrix} mixed \\ forward \end{pmatrix}$$

$$E_t \left[f\left(y_{t-1}^*, y_t, y_{t+1}^{**}, u_t\right) \right] = 0$$

Perturbation Approach

first ingredient: perturbation parameter σ

- scale u_t by a parameter $\sigma \ge 0$: $u_t = \sigma \eta_t$
- $\triangleright \eta_t$ is white noise with contemporaneous k-th order product moments:

$$\Sigma^{(k)} = \mathbb{E}\{\eta_t \otimes \eta_t \otimes \ldots \otimes \eta_t\}$$
k times

- note that this implies $\Sigma_u^{(k)} = \sigma^k \ \Sigma_\eta^{(k)}$
- $oldsymbol{\sigma}$ is called the *perturbation parameter*
 - \blacktriangleright non-stochastic, i.e. static model: $\sigma=0$
 - stochastic, i.e. dynamic model: $\sigma > 0$

second ingredient: dynamic solution is defined via a policy function

• find an invariant mapping between y_t and (y_{t-1}^*, u_t) :

$$y_t = g(y_{t-1}^*, u_t, \sigma)$$

- $g(\cdot)$ is called the policy-function or decision rule
- $g(\cdot)$ is unknown, i.e. we need to solve a functional equation

third ingredient: implicit function theorem

$$E_t \left[f\left(y_{t-1}^*, y_t, y_{t+1}^{**}, u_t\right) \right] = 0$$

implicitly defines

$$g(y_{t-1}^*, u_t, \sigma)$$

fourth ingredient: Taylor approximation of order k

- ▶ compute the coefficients of a Taylor expansion of $g(y_{t-1}^*, u_t, \sigma)$ from a Taylor expansion of $E_t\left[f\left(y_{t-1}^*, y_t, y_{t+1}^{***}, u_t\right)\right] = 0$
- all evaluated at some known point; mostly non-stochastic steady-state (i.e. $\sigma = 0$)

$$u := u_t$$
, $u_+ := u_{t+1}$

$$y_0 := y_t, y_0^* := y_t^*, y_0^{**} := y_t^{**}$$

$$y_{-} := y_{t-1}, y_{-}^* := y_{t-1}^*, y_{-}^{**} := y_{t-1}^{**}$$

$$y_+ := y_{t+1}, y_+^* := y_{t+1}^*, y_+^{**} := y_{t+1}^{**}$$

$$x := y_{t-1}^*$$
 denotes previous states

 \bar{y} , \bar{y}^* , \bar{y}^{**} , \bar{x} denote non-stochastic steady-state

 $\hat{x} := y_{t-1}^* - \bar{y}^*$ denotes deviation from steady-state

$$y_0 = g(x, u, \sigma)$$
 $y_0^* = g^*(x, u, \sigma)$ $y_0^{**} = g^{**}(x, u, \sigma)$

$$y_{+}^{**} = g^{**}(y_{0}^{*}, u_{+}, \sigma) = g^{**}(g^{*}(x, u, \sigma), u_{+}, \sigma) \equiv G(x, u, u_{+}, \sigma)$$

dynamic model in terms of x, u, u_+ and σ :

$$f(y_{-}^{*}, y_{0}, y_{+}^{**}, u) = f(x, g(x, u, \sigma), g^{**}(g^{*}(x, u, \sigma), u_{+}, \sigma), u)$$
$$= f(x, g(x, u, \sigma), G(x, u, \sigma, u_{+}), u_{t})$$
$$\equiv F(x, u, u_{+}, \sigma)$$

$$r := \begin{pmatrix} x \\ u \\ u_+ \\ \sigma \end{pmatrix}$$

[input vector for F and G]

$$w(r) := \begin{pmatrix} y_0^* \\ u_+ \\ \sigma \end{pmatrix} = \begin{pmatrix} g^*(x, u, \sigma) \\ u_+ \\ \sigma \end{pmatrix}$$

[input vector for g^{**}]

$$z(r) := \begin{pmatrix} y_{-}^{*} \\ y_{0} \\ y_{+}^{**} \\ u \end{pmatrix} = \begin{pmatrix} x \\ g(x, u, \sigma) \\ G(x, u, u_{+}, \sigma) \\ u \end{pmatrix} = \begin{pmatrix} x \\ g(x, u, \sigma) \\ g^{**}(g^{*}(x, u, \sigma), u_{+}, \sigma) \\ u \end{pmatrix}$$

[input vector for f]

Objective

we know how to solve for the non-stochastic ($\sigma = 0$) steady-state \bar{y} by solving the *static* model:

$$\bar{f}(\bar{y}) \equiv f(\bar{y}^*, \bar{y}, \bar{y}^{**}, 0) = F(\bar{y}^*, 0, 0, 0) = 0$$

which provides us with the non-stochastic steady-state for \bar{y} , \bar{y}^* and \bar{y}^{**}

even though we do not know $g(\cdot)$ explicitly, we do know its value at \bar{y} , \bar{y}^* and \bar{y}^{**} :

$$\bar{y}^* = g^*(\bar{y}^*, 0, 0)$$
 and $\bar{y} = g(\bar{y}^*, 0, 0)$

Objective

use a k-order Taylor expansion of f to recover the coefficients of the k-order Taylor expansion of g:

$$y = \bar{y} + g_x \hat{x} + g_u u + g_\sigma \sigma$$

$$+\frac{1}{2}g_{xx}(\hat{x}\otimes\hat{x}) + \frac{2}{2}g_{xu}(\hat{x}\otimes u) + \frac{2}{2}g_{x\sigma}(\hat{x}\otimes\sigma) + \frac{1}{2}g_{uu}(u\otimes u) + \frac{2}{2}g_{u\sigma}(u\otimes\sigma) + \frac{1}{2}g_{\sigma\sigma}\sigma^2$$

$$+\frac{1}{6}g_{xxx}(\hat{x}\otimes\hat{x}\otimes\hat{x})+\frac{3}{6}g_{xxu}(\hat{x}\otimes\hat{x}\otimes u)+\frac{3}{6}g_{xx\sigma}(\hat{x}\otimes\hat{x})\sigma+\frac{3}{6}g_{xuu}(\hat{x}\otimes u\otimes u)+\frac{6}{6}g_{xu\sigma}(\hat{x}\otimes u\otimes u)+\frac{3}{6}g_{xu\sigma}(\hat{x}\otimes u)+\frac{3}{6}g_{xu\sigma}($$

$$+\frac{1}{24}\dots$$

Objective

find the coefficients of the k-order Taylor expansion of g:

$$g_{x^{q_{U}p_{\sigma}k-q-p}} := \frac{\partial^{k}g(\bar{x},0,0)}{\underbrace{\partial x \dots \partial x} \cdot \underbrace{\partial u \dots \partial u} \cdot \underbrace{\partial \sigma \dots \partial \sigma}_{k-q-p \text{ times}}}$$

$$q \text{ times} \quad p \text{ times} \quad k-q-p \text{ times}$$

where $0 \le p, q \le k$ and $0 \le p + q \le k$

all evaluated at some known point, mostly the non-stochastic steady-state

Underlying Assumption

- f and g are sufficiently differentiable so that the implicit function theorem (or its Banach space generalization) applies.
- for f this assumption is easily checked
- for *g* we typically can only ASSUME that *g* behaves similarly to *f* (logical and credible, but not a formal proof)

Matrix vs Tensor Notation

Matrix vs Tensor Notation

higher-order perturbation

- based on multivariate version of implicit function theorem
- requires use of multidimensional chain rules
- many summation operators
- conventional matrix notation becomes unwieldy at k > 2 (unless you know what you're doing)
- tensor notation and Einstein summation notation is more concise (but requires getting used to)

Tensor Notation

- ▶ a tensor \mathscr{A} is a multidimensional array, i.e. a collection of numbers, where we use indices $\alpha_j \in [1,...,n_j], 1 \leq j \leq d$, to access the elements in the array
- formally, it is defined as a mapping

$$\mathscr{A}: \{1,\dots,n_1\} \times \{1,\dots,n_2\} \times \dots \times \{1,\dots,n_d\} \to \mathbb{R}$$
$$(\alpha_1,\alpha_2,\dots,\alpha_d) \mapsto [\mathscr{A}]_{\alpha_1,\alpha_2,\dots,\alpha_d}$$

which assigns the real-valued entry $[\mathcal{A}]_{\alpha_1,\alpha_2,...,\alpha_d}$ to each index $(\alpha_1,\alpha_2,\ldots,\alpha_d)$ as function value

Einstein summation notation allows to compactly express terms in a multivariate Taylor series expansion

- eliminates the summation symbols by making different use of the location of indices
- > same index used first as subscript and then as superscript of two tensors implies summation of the products

Examples

example for 1-dimensional tensors \mathcal{A} (of size n) and \mathcal{B} (of size n):

$$[\mathcal{A}]_{\alpha_1}[\mathcal{B}]^{\alpha_1} = \sum_{\alpha_1=1}^n [\mathcal{A}]_{\alpha_1}[\mathcal{B}]_{\alpha_1}$$

$$\alpha_1 = 1$$

example for 1-dimensional tensors \mathscr{A} (of size n) and \mathscr{B} (of size m), and 2-dimensional tensor \mathscr{D} (of size $n \times m$):

$$[\mathcal{D}]_{\alpha_1\alpha_2} [\mathcal{A}]^{\alpha_1} [\mathcal{B}]^{\alpha_2} = \sum_{\alpha_1=1}^n \sum_{\alpha_2=1}^m [\mathcal{D}]_{\alpha_1\alpha_2} [\mathcal{A}]_{\alpha_1} [\mathcal{B}]_{\alpha_2}$$

$$\alpha_1=1 \alpha_2=1$$

example for 2-dimensional tensors \mathcal{D} (of size $n \times m$) and \mathcal{E} (of size $n \times m$):

$$[\mathcal{D}]_{\alpha_1 \alpha_2} [\mathcal{E}]^{\alpha_1 \alpha_2} = \sum_{\alpha_1 = 1}^n \sum_{\alpha_2 = 1}^m [\mathcal{D}]_{\alpha_1 \alpha_2} [\mathcal{E}]_{\alpha_1 \alpha_2}$$

$$\alpha_1 = 1 \alpha_2 = 1$$

example for 1-dimensional tensors \mathcal{A} (of size n), \mathcal{B} (of size m) and \mathcal{C} (of size o), 3-dimensional tensor \mathcal{F} (of size $n \times m \times o$):

$$[\mathcal{F}]_{\alpha_1\alpha_2,\alpha_3}[\mathcal{A}]^{\alpha_1}[\mathcal{B}]^{\alpha_2}[\mathcal{C}]^{\alpha_3} = \sum_{\alpha_1=1}^n \sum_{\alpha_2=1}^m \sum_{\alpha_3=1}^o [\mathcal{F}]_{\alpha_1\alpha_2\alpha_3}[\mathcal{A}]_{\alpha_1}[\mathcal{B}]_{\alpha_2}[\mathcal{C}]_{\alpha_3}$$

example for 1-dimensional tensor \mathscr{A} (of size n), 2-dimensional tensor \mathscr{D} (of size $m \times o$) and 3-dimensional tensor \mathscr{F} (of size $n \times m \times o$):

$$[\mathcal{F}]_{\alpha_1\alpha_2,\alpha_3}[\mathcal{A}]^{\alpha_1}[\mathcal{D}]^{\alpha_2\alpha_3} = \sum_{\alpha_1=1}^n \sum_{\alpha_2=1}^m \sum_{\alpha_3=1}^o [\mathcal{F}]_{\alpha_1\alpha_2\alpha_3}[\mathcal{A}]_{\alpha_1}[\mathcal{D}]_{\alpha_2\alpha_3}$$

$$\alpha_1=1 \alpha_2=1 \alpha_3=1$$

Faà di Bruno's Formula

Faà di Bruno's Formula

- identity in mathematics generalizing the chain rule to higher derivatives
- in Einstein summation notation:

$$[F_{r^k}]_{\tau_k}^i := \frac{\partial^k [F]_i}{\partial [r]_{\tau_1} \partial [r]_{\tau_2} \cdots \partial [r]_{\tau_k}} = \sum_{l=1}^k [f_{z^l}]_{\gamma_l}^i \sum_{c \in \mathcal{M}_{l,k}} \prod_{m=1}^l [z_{r^{|c_m|}}]_{\tau(c_m)}^{\gamma_m}$$

$$[G_{r^k}]_{\tau_k}^l := \frac{\partial^k [G]_l}{\partial [r]_{\tau_1} \partial [r]_{\tau_2} \cdots \partial [r]_{\tau_k}} = \sum_{l=1}^k [g_{w^l}^{***}]_{\phi_l}^l \sum_{c \in \mathcal{M}_{l,k}} \prod_{m=1}^l [w_{r^{|c_m|}}]_{\tau(c_m)}^{\phi_m}$$

• indices are compressed into bold vectors $\tau_k := \tau_1, \ldots, \tau_k, \gamma_l := \gamma_1, \ldots, \gamma_l$ and $\phi_l := \phi_1, \ldots, \phi_l$

$$[F_{r^k}]_{\tau_k}^i := \frac{\partial^k [F]_i}{\partial [r]_{\tau_1} \partial [r]_{\tau_2} \cdots \partial [r]_{\tau_k}} = \sum_{l=1}^k [f_{z^l}]_{\gamma_l}^i \sum_{c \in \mathcal{M}_{l,k}} \prod_{m=1}^l [z_{r^{|c_m|}}]_{\tau(c_m)}^{\gamma_m}$$

let $[F]_i$ denote the i-th dynamic model equation, then $[F_{r^k}]_{\tau_k}^t$ is the k-th partial derivative of equation i with respect to variables in r selected by integers τ_k , where $[r]_{\tau_i}$ is the τ_j -th element of r

$$[F_{r^k}]_{\tau_k}^i := \frac{\partial^k [F]_i}{\partial [r]_{\tau_1} \partial [r]_{\tau_2} \cdots \partial [r]_{\tau_k}} = \sum_{l=1}^k [f_{z^l}]_{\gamma_l}^i \sum_{c \in \mathcal{M}_{l,k}} \prod_{m=1}^l [z_{r^{|c_m|}}]_{\tau(c_m)}^{\gamma_m}$$

let $[f]_i$ denote the *i*-th dynamic model equation, then $[f_{z^l}]_{\gamma_l}^i$ is the *l*-th partial derivative of equation *i* with respect to dynamic variables *z* indexed by integers γ_l , where $[z]_{\gamma_i}$ is the γ_j -th element of *z*:

$$[f_{z^l}]_{\gamma_l}^i := \frac{\partial^l [f]_i}{\partial [z]_{\gamma_1} \partial [z]_{\gamma_2} \cdots \partial [z]_{\gamma_l}}$$

$$[F_{r^k}]_{\tau_k}^i := \frac{\partial^k [F]_i}{\partial [r]_{\tau_1} \partial [r]_{\tau_2} \cdots \partial [r]_{\tau_k}} = \sum_{l=1}^k [f_{z^l}]_{\gamma_l}^i \sum_{c \in \mathcal{M}_{l,k}} \prod_{m=1}^l [z_{r^{|c_m|}}]_{\tau(c_m)}^{\gamma_m}$$

let $[z]_{\gamma_m}$ denote the γ_m -th dynamic model variable, then $[z_{r|c_m}]_{\tau(c_m)}^{\gamma_m}$ is the $|c_m|$ -th partial derivative of $[z]_{\gamma_m}$ with respect to variables in r indexed by integers $\tau(c_m)$

$$[z_{r|c_m|}]_{\boldsymbol{\tau}(c_m)}^{\gamma_m} := \frac{\partial^{|c_m|}[z]_{\gamma_m}}{\partial [r]_{\boldsymbol{\tau}(c_1)} \partial [r]_{\boldsymbol{\tau}(c_2)} \cdots \partial [r]_{\boldsymbol{\tau}(c_m)}}$$

$$[F_{r^k}]_{\tau_k}^i := \frac{\partial^k [F]_i}{\partial [r]_{\tau_1} \partial [r]_{\tau_2} \cdots \partial [r]_{\tau_k}} = \sum_{l=1}^k [f_{z^l}]_{\gamma_l}^i \sum_{c \in \mathcal{M}_{l,k}} \prod_{m=1}^l [z_{r^{|c_m|}}]_{\tau(c_m)}^{\gamma_m}$$

combinatorics

- $\mathcal{M}_{l,k}$ is a so-called equivalence set (or Bell polynomial), which is defined as the set of all partitions c of the set of k indices with l classes
- $ightharpoonup c_m$ is the m-th class of partition c, $|c_m|$ its cardinality, and $\tau(c_m)$ is a sequence of τ 's indexed by c_m
- note: selection of $\tau(c_m)$ ignores indices in c_m when they correspond to the perturbation parameter σ

example:
$$\mathcal{M}_{2,3} = \left\{ \underbrace{\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\}, \{\{3\}, \{1,2\}\}\},}_{c} \right\}$$

Examples

$$[F_{r^k}]_{\tau_k}^i := \frac{\partial^k [F]_i}{\partial [r]_{\tau_1} \partial [r]_{\tau_2} \cdots \partial [r]_{\tau_k}} = \sum_{l=1}^k [f_{z^l}]_{\gamma_l}^i \sum_{c \in \mathcal{M}_{l,k}} \prod_{m=1}^l [z_{r^{|c_m|}}]_{\tau(c_m)}^{\gamma_m}$$

first-order derivative of equation i with respect to the α_1 -th state variable:

$$[F_x]_{\alpha_1}^i = [f_z]_{\gamma_1}^i [z_x]_{\alpha_1}^{\gamma_1} = \sum_{\gamma_1=1}^{n_z} \frac{\partial [f]_i}{\partial [z]_{\gamma_1}} \frac{\partial [z]_{\gamma_1}}{\partial [x]_{\alpha_1}}$$

$$\text{with } \mathcal{M}_{1,1} = \left\{ \begin{array}{c} c_1 \\ \{1\} \\ c \end{array} \right\}$$

$$[F_{r^k}]_{\tau_k}^i := \frac{\partial^k [F]_i}{\partial [r]_{\tau_1} \partial [r]_{\tau_2} \cdots \partial [r]_{\tau_k}} = \sum_{l=1}^k [f_{z^l}]_{\gamma_l}^i \sum_{c \in \mathcal{M}_{l,k}} \prod_{m=1}^l [z_{r^{|c_m|}}]_{\tau(c_m)}^{\gamma_m}$$

second-order derivative of equation i with respect to the α_1 -th state variable and to the β_1 -th current shock variable:

$$[F_{xu}]_{\alpha_1\beta_1}^i = [f_z]_{\gamma_1}^i [z_{xu}]_{\alpha_1\beta_1}^{\gamma_1} + [f_{zz}]_{\gamma_1\gamma_2}^i [z_x]_{\alpha_1}^{\gamma_1} [z_u]_{\beta_1}^{\gamma_2}$$

$$=\sum_{\gamma_1=1}^{n_z} \frac{\partial [f]_i}{\partial [z]_{\gamma_1}} \frac{\partial^2 [z]_{\gamma_1}}{\partial [x]_{\alpha_1} \partial [u]_{\beta_1}} + \sum_{\gamma_1=1}^{n_z} \sum_{\gamma_2=1}^{n_z} \frac{\partial^2 [f]_i}{\partial [z]_{\gamma_1} \partial [z]_{\gamma_2}} \frac{\partial [z]_{\gamma_1}}{\partial [x]_{\gamma_1}} \frac{\partial [z]_{\gamma_2}}{\partial [u]_{\beta_1}}$$

with
$$\mathcal{M}_{1,2} = \left\{ \underbrace{\frac{c_1}{\{1,2\}}}_{c} \right\}, \, \mathcal{M}_{2,2} = \left\{ \underbrace{\frac{c_1}{\{1\}}, \underbrace{c_2}_{\{2\}}}_{c} \right\}$$

$$[F_{r^k}]_{\boldsymbol{\tau}_k}^i := \frac{\partial^k [F]_i}{\partial [r]_{\tau_1} \partial [r]_{\tau_2} \cdots \partial [r]_{\tau_k}} = \sum_{l=1}^k [f_{z^l}]_{\gamma_l}^i \sum_{\boldsymbol{c} \in \mathcal{M}_{l,k}} \prod_{m=1}^l [z_{r^{|\boldsymbol{c}_m|}}]_{\boldsymbol{\tau}(\boldsymbol{c}_m)}^{\gamma_m}$$

third-order derivative of equation i with respect to the α_1 -th and α_2 -th state variables and to the β_1 -th current shock variable:

$$\begin{split} [F_{xxu}]_{\alpha_{1}\alpha_{2}\beta_{1}}^{i} &= [f_{z}]_{\gamma_{1}}^{i} [z_{xxu}]_{\alpha_{1}\alpha_{2}\beta_{1}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} \left([z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{xu}]_{\alpha_{2}\beta_{1}}^{\gamma_{2}} + [z_{x}]_{\alpha_{1}\beta_{1}}^{\gamma_{1}} [z_{xu}]_{\alpha_{1}\beta_{1}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{xx}]_{\alpha_{1}\alpha_{2}}^{\gamma_{2}} \right) + [f_{zzz}]_{\gamma_{1}\gamma_{2}\gamma_{3}}^{i} [z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{x}]_{\beta_{1}}^{\gamma_{2}} \\ &= \sum_{\gamma_{1}=1}^{n_{z}} \frac{\partial [f]_{i}}{\partial [z]_{\gamma_{1}}} \frac{\partial^{3}[z]_{\gamma_{1}}}{\partial [x]_{\alpha_{1}}\partial [x]_{\alpha_{2}}\partial [u]_{\beta_{1}}} \end{split}$$

$$+ \sum_{\gamma_{1}=1}^{n_{z}} \sum_{\gamma_{2}=1}^{n_{z}} \frac{\partial^{2}[f]_{i}}{\partial[z]_{\gamma_{1}} \partial[z]_{\gamma_{2}}} \left(\frac{\partial[z]_{\gamma_{1}}}{\partial[x]_{\alpha_{1}}} \frac{\partial^{2}[z]_{\gamma_{2}}}{\partial[x]_{\alpha_{2}} \partial[u]_{\beta_{1}}} + \frac{\partial[z]_{\gamma_{1}}}{\partial[x]_{\alpha_{2}}} \frac{\partial^{2}[z]_{\gamma_{2}}}{\partial[x]_{\alpha_{1}} \partial[u]_{\beta_{1}}} + \frac{\partial[z]_{\gamma_{1}}}{\partial[u]_{\beta_{1}}} \frac{\partial^{2}[z]_{\gamma_{2}}}{\partial[x]_{\alpha_{1}} \partial[x]_{\alpha_{2}}} \right) \\ + \sum_{\gamma_{1}=1}^{n_{z}} \sum_{\gamma_{2}=1}^{n_{z}} \sum_{\gamma_{3}=1}^{n_{z}} \frac{\partial^{3}[f]_{i}}{\partial[z]_{\gamma_{1}} \partial[z]_{\gamma_{2}} \partial[z]_{\gamma_{3}}} \frac{\partial[z]_{\gamma_{1}}}{\partial[x]_{\alpha_{1}}} \frac{\partial[z]_{\gamma_{2}}}{\partial[x]_{\alpha_{1}}} \frac{\partial[z]_{\gamma_{2}}}{\partial[x]_{\alpha_{2}}} \frac{\partial[z]_{\gamma_{3}}}{\partial[u]_{\beta_{1}}}$$

with
$$\mathcal{M}_{1,3} = \left\{ \underbrace{\begin{cases} c_1 \\ 1,2,3 \end{cases}}_{c} \right\}$$
, $\mathcal{M}_{2,3} = \left\{ \underbrace{\begin{cases} c_1 & c_2 \\ \{1\} & \{2,3\} \} \end{cases}}_{c} \underbrace{\begin{cases} c_1 & c_2 \\ \{2\} & \{1,3\} \} \end{cases}}_{c}, \underbrace{\begin{cases} c_1 & c_2 \\ \{3\} & \{1,2\} \} \end{cases}}_{44}, \right\}$, $\mathcal{M}_{3,3} = \left\{ \underbrace{\begin{cases} c_1 & c_2 & c_3 \\ \{1\} & \{2\} & \{3\} \end{cases}}_{c} \right\}$

$$[F_{r^k}]_{\boldsymbol{\tau}_k}^i := \frac{\partial^k [F]_i}{\partial [r]_{\tau_1} \partial [r]_{\tau_2} \cdots \partial [r]_{\tau_k}} = \sum_{l=1}^k [f_{z^l}]_{\gamma_l}^i \sum_{\boldsymbol{c} \in \mathcal{M}_{l,k}} \prod_{m=1}^l [z_{r^{|\boldsymbol{c}_m|}}]_{\boldsymbol{\tau}(\boldsymbol{c}_m)}^{\gamma_m}$$

third-order derivative of equation i with respect to the α_1 -th state variable and to the β_1 -th and β_2 -th current shock variables:

$$\begin{split} [F_{xuu}]_{\alpha_{1}\beta_{1}\beta_{2}}^{i} &= [f_{z}]_{\gamma_{1}}^{i} [z_{xuu}]_{\alpha_{1}\beta_{1}\beta_{2}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} \left([z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{uu}]_{\beta_{1}\beta_{2}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{xu}]_{\beta_{2}}^{\gamma_{2}} + [z_{u}]_{\beta_{2}}^{\gamma_{1}} [z_{xu}]_{\beta_{2}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{xu}]_{\beta_{1}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{xu}]_{\beta_{1}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{xu}]_{\beta_{2}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{xu}]_{\beta_{2}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{2}} [z_{xu}]_{\beta_{1}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{2}} + [$$

$$+\sum_{\gamma_1=1}^{n_z}\sum_{\gamma_2=1}^{n_z}\frac{\partial^2[f]_i}{\partial[z]_{\gamma_1}\partial[z]_{\gamma_2}}\left(\frac{\partial[z]_{\gamma_1}}{\partial[x]_{\alpha_1}}\frac{\partial^2[z]_{\gamma_2}}{\partial[u]_{\beta_1}\partial[u]_{\beta_2}}+\frac{\partial[z]_{\gamma_1}}{\partial[u]_{\beta_1}}\frac{\partial^2[z]_{\gamma_2}}{\partial[x]_{\alpha_1}\partial[u]_{\beta_2}}+\frac{\partial[z]_{\gamma_1}}{\partial[u]_{\beta_2}}\frac{\partial^2[z]_{\gamma_2}}{\partial[x]_{\alpha_1}\partial[u]_{\beta_2}}\right)$$

$$+\sum_{\substack{\gamma_1=1\\\gamma_1=1}}^{n_z}\sum_{\substack{\gamma_2=1\\\gamma_2=1}}^{n_z}\sum_{\substack{\gamma_3=1}}^{n_z}\frac{\partial^3[f]_i}{\partial[z]_{\gamma_1}\partial[z]_{\gamma_2}\partial[z]_{\gamma_3}}\frac{\partial[z]_{\gamma_1}}{\partial[x]_{\gamma_2}\partial[z]_{\gamma_3}}\frac{\partial[z]_{\gamma_1}}{\partial[x]_{\alpha_1}}\frac{\partial[z]_{\gamma_2}}{\partial[u]_{\beta_1}}\frac{\partial[z]_{\gamma_3}}{\partial[u]_{\beta_2}}$$

with
$$\mathcal{M}_{1,3} = \left\{ \underbrace{\{1,2,3\}}_{c} \right\}$$
, $\mathcal{M}_{2,3} = \left\{ \underbrace{\{\{1\}\}\{2,3\}\}}_{c}, \underbrace{\{\{2\}\}\{1,3\}\}}_{c}, \underbrace{\{\{3\}\}\{1,2\}\}}_{45}, \right\}$, $\mathcal{M}_{3,3} = \left\{ \underbrace{\{\{1\},\{2\},\{3\}\}}_{c}, \underbrace{\{3\}\}\{1,2\}\}}_{c}, \right\}$

$$[F_{r^k}]_{\boldsymbol{\tau}_k}^i := \frac{\partial^k [F]_i}{\partial [r]_{\tau_1} \partial [r]_{\tau_2} \cdots \partial [r]_{\tau_k}} = \sum_{l=1}^k [f_{z^l}]_{\gamma_l}^i \sum_{\boldsymbol{c} \in \mathcal{M}_{l,k}} \prod_{m=1}^l [z_{r^{|\boldsymbol{c}_m|}}]_{\boldsymbol{\tau}(\boldsymbol{c}_m)}^{\gamma_m}$$

third-order derivative of equation i with respect to the α_1 -th state, to the β_1 -th current shock and to the δ_1 -th future shock variables:

$$\begin{split} [F_{xuu_{+}}]_{\alpha_{1}\beta_{1}\delta_{1}}^{i} &= [f_{z}]_{\gamma_{1}}^{i} [z_{xuu_{+}}]_{\alpha_{1}\beta_{1}\delta_{1}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} \left([z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{uu_{+}}]_{\beta_{1}\delta_{1}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{xu_{+}}]_{\alpha_{1}\delta_{1}}^{\gamma_{2}} + [z_{u_{+}}]_{\delta_{1}}^{\gamma_{2}} [z_{xu_{+}}]_{\beta_{1}}^{\gamma_{2}} + [z_{u_{+}}]_{\beta_{1}}^{\gamma_{2}} + [z_{u_{+}}]_{\beta_{1}}^{\gamma_$$

$$+ \sum_{\gamma_{1}=1}^{n_{z}} \sum_{\gamma_{2}=1}^{n_{z}} \frac{\partial^{2}[f]_{i}}{\partial[z]_{\gamma_{1}} \partial[z]_{\gamma_{2}}} \left(\frac{\partial[z]_{\gamma_{1}}}{\partial[x]_{\alpha_{1}}} \frac{\partial^{2}[z]_{\gamma_{2}}}{\partial[u]_{\beta_{1}} \partial[u_{+}]_{\delta_{1}}} + \frac{\partial[z]_{\gamma_{1}}}{\partial[u]_{\beta_{1}}} \frac{\partial^{2}[z]_{\gamma_{2}}}{\partial[x]_{\alpha_{1}} \partial[u_{+}]_{\delta_{1}}} + \frac{\partial^{2}[z]_{\gamma_{2}}}{\partial[u]_{\beta_{1}}} \frac{\partial^{2}[z]_{\gamma_{2}}}{\partial[x]_{\alpha_{1}} \partial[u_{+}]_{\delta_{1}}} + \frac{\partial^{2}[z]_{\gamma_{1}}}{\partial[u]_{\beta_{1}}} \frac{\partial^{2}[z]_{\gamma_{2}}}{\partial[x]_{\alpha_{1}} \partial[u]_{\beta_{1}}} \right)$$

$$+ \sum_{\gamma_{1}=1}^{n_{z}} \sum_{\gamma_{2}=1}^{n_{z}} \sum_{\gamma_{3}=1}^{n_{z}} \frac{\partial^{3}[f]_{i}}{\partial[z]_{\gamma_{1}} \partial[z]_{\gamma_{2}} \partial[z]_{\gamma_{3}}} \frac{\partial[z]_{\gamma_{1}}}{\partial[x]_{\alpha_{1}}} \frac{\partial[z]_{\gamma_{2}}}{\partial[u]_{\beta_{1}}} \frac{\partial[z]_{\gamma_{2}}}{\partial[u]_{\beta_{1}}} \frac{\partial^{2}[z]_{\gamma_{2}}}{\partial[u]_{\beta_{1}}} \frac{\partial^{2}[z]_{$$

with
$$\mathcal{M}_{1,3} = \left\{ \underbrace{\begin{cases} c_1 \\ 1,2,3 \end{cases}}_{c} \right\}$$
, $\mathcal{M}_{2,3} = \left\{ \underbrace{\begin{cases} c_1 & c_2 \\ \{1\} & \{2,3\} \} \end{cases}}_{c} \underbrace{\begin{cases} c_1 & c_2 \\ \{1\} & \{1,3\} \} \end{cases}}_{c}, \underbrace{\begin{cases} c_1 & c_2 \\ \{3\} & \{1,2\} \},}_{46} \right\}$, $\mathcal{M}_{3,3} = \left\{ \underbrace{\begin{cases} c_1 & c_2 \\ \{1\} & \{2\} & \{3\} \end{cases}}_{c} \right\}$

$$[F_{r^k}]_{\tau_k}^i := \frac{\partial^k [F]_i}{\partial [r]_{\tau_1} \partial [r]_{\tau_2} \cdots \partial [r]_{\tau_k}} = \sum_{l=1}^k [f_{z^l}]_{\gamma_l}^i \sum_{c \in \mathcal{M}_{l,k}} \prod_{m=1}^l [z_{r^{|c_m|}}]_{\tau(c_m)}^{\gamma_m}$$

third-order derivative of equation i with respect to the α_1 -th state and to two times the perturbation parameter:

$$\begin{split} [F_{\chi_{\partial\sigma}}]_{\alpha_{1}}^{i} &= [f_{z}]_{\gamma_{1}}^{i} [z_{\chi_{\partial\sigma}}]_{\alpha_{1}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} \left([z_{\chi_{\partial}}]_{\alpha_{1}}^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}} + [z_{\chi_{\partial}}]_{\alpha_{1}}^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}} + [z_{\chi_{\partial}}]_{\alpha_{1}}^{\gamma_{1}} [z_{\sigma\sigma}]^{\gamma_{2}} \right) + [f_{zzz}]_{\gamma_{1}\gamma_{2}\gamma_{3}}^{i} [z_{\chi}]_{\alpha_{1}}^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}} [z_{\sigma}]^{\gamma_{3}} \\ &= \sum_{\gamma_{1}=1}^{n_{z}} \frac{\partial [f]_{i}}{\partial [z]_{\gamma_{1}}} \frac{\partial^{3} [z]_{\gamma_{1}}}{\partial [x]_{\alpha_{1}} \partial \sigma \partial \sigma} \\ &+ \sum_{\gamma_{1}=1}^{n_{z}} \sum_{\gamma_{2}=1}^{n_{z}} \frac{\partial^{2} [f]_{i}}{\partial [z]_{\gamma_{1}} \partial [z]_{\gamma_{2}}} \left(\frac{\partial^{2} [z]_{\gamma_{1}}}{\partial [x]_{\alpha_{1}} \partial \sigma} \frac{\partial [z]_{\gamma_{2}}}{\partial \sigma} + \frac{\partial^{2} [z]_{\gamma_{1}}}{\partial [x]_{\alpha_{1}} \partial \sigma} \frac{\partial [z]_{\gamma_{2}}}{\partial \sigma} + \frac{\partial^{2} [z]_{\gamma_{1}}}{\partial [x]_{\alpha_{1}} \partial \sigma} \frac{\partial^{2} [z]_{\gamma_{2}}}{\partial \sigma} \right) \\ &+ \sum_{\gamma_{1}=1}^{n_{z}} \sum_{\gamma_{2}=1}^{n_{z}} \sum_{\gamma_{3}=1}^{n_{z}} \frac{\partial^{3} [f]_{i}}{\partial [z]_{\gamma_{1}} \partial [z]_{\gamma_{2}}} \frac{\partial [z]_{\gamma_{1}}}{\partial [x]_{\alpha_{1}}} \frac{\partial [z]_{\gamma_{2}}}{\partial \sigma} \frac{\partial [z]_{\gamma_{2}}}{\partial \sigma} \right) \\ &+ \sum_{\gamma_{1}=1}^{n_{z}} \sum_{\gamma_{2}=1}^{n_{z}} \sum_{\gamma_{3}=1}^{n_{z}} \frac{\partial^{3} [f]_{i}}{\partial [z]_{\gamma_{1}} \partial [z]_{\gamma_{3}}} \frac{\partial [z]_{\gamma_{1}}}{\partial [x]_{\alpha_{1}}} \frac{\partial [z]_{\gamma_{2}}}{\partial \sigma} \frac{\partial [z]_{\gamma_{3}}}{\partial \sigma} \right) \\ &+ \sum_{\gamma_{1}=1}^{n_{z}} \sum_{\gamma_{2}=1}^{n_{z}} \sum_{\gamma_{3}=1}^{n_{z}} \frac{\partial^{3} [f]_{i}}{\partial [z]_{\gamma_{1}} \partial [z]_{\gamma_{2}}} \frac{\partial [z]_{\gamma_{1}}}{\partial [x]_{\alpha_{1}}} \frac{\partial [z]_{\gamma_{2}}}{\partial \sigma} \frac{\partial [z]_{\gamma_{3}}}{\partial \sigma} \right) \\ &+ \sum_{\gamma_{1}=1}^{n_{z}} \sum_{\gamma_{2}=1}^{n_{z}} \sum_{\gamma_{3}=1}^{n_{z}} \frac{\partial^{3} [f]_{i}}{\partial [z]_{\gamma_{1}} \partial [z]_{\gamma_{2}}} \frac{\partial [z]_{\gamma_{1}}}{\partial [x]_{\alpha_{1}}} \frac{\partial [z]_{\gamma_{2}}}{\partial \sigma} \frac{\partial [z]_{\gamma_{3}}}{\partial \sigma} \right) \\ &+ \sum_{\gamma_{1}=1}^{n_{z}} \sum_{\gamma_{2}=1}^{n_{z}} \sum_{\gamma_{3}=1}^{n_{z}} \frac{\partial^{3} [f]_{i}}{\partial [z]_{\gamma_{1}} \partial [z]_{\gamma_{2}}} \frac{\partial [z]_{\gamma_{1}}}{\partial [z]_{\gamma_{2}}} \frac{\partial [z]_{\gamma_{1}}}{\partial \sigma} \frac{\partial [z]_{\gamma_{2}}}{\partial \sigma} \frac{\partial [z]_{\gamma_{3}}}{\partial \sigma} \frac{\partial [z]_{\gamma_{3}}}{$$

Note that the selection of $\tau(c_m)$ ignores indices in c_m when they correspond to the perturbation parameter σ .

Tensor Unfolding

Tensor Unfolding

- we can also express all tensors $[F_{r^k}]^i_{\tau_k}$ by a matrix F_{r^k}
- ▶ idea is to map a multidimensional tensor to 2-dimensional matrix
- \blacktriangleright rows correspond to model equations i, columns correspond to specific ordering of individual tensors
 - natural approach for columns: let all τ_k indices run from 1 to n_r and store computed values sequentially in rows and columns
 - example column ordering for k = 3 and $n_r = 3$:

$$(1,1,1); (1,1,2); (1,1,3); (1,2,1); (1,2,2); (1,2,3); (1,3,1); (1,3,2); (1,3,3); ...$$
 $(2,1,1); (2,1,2); (2,1,3); (2,2,1); (2,2,2); (2,2,3); (2,3,1); (2,3,2); (2,3,3); ...$ $(3,1,1); (3,1,2); (3,1,3); (3,2,1); (3,2,2); (3,2,3); (3,3,1); (3,3,2); (3,3,3); ...$

 $\partial^3 [F]_5$ $\partial [r]_3 \partial [r]_1 \partial [r]_2$ would be the 5th row and 20th column of matrix F_{r^k}

Tensor Unfolding

- running loops for unfolding is computational inefficient, alternative:
 - basic matrix multiplication rules
 - Kronecker products
 - permutation matrices which perform the necessary reordering such that tensor summations are in accordance with matrix multiplications
- Dynare uses a dedicated and quite efficient Multidimensional Tensor Library written in C++ for k > 2

Examples

Tensor Unfolding $[F_x]_{\alpha_1}^l$

$$[F_x]^i_{\alpha_1} = [f_z]^i_{\gamma_1} [z_x]^{\gamma_1}_{\alpha_1}$$
$$F_x = f_z z_x$$

• basic matrix multiplication rules for matrix f_z and vector z_x

Tensor Unfolding $[F_{xu}]_{\alpha_1\beta_1}^l$

$$[F_{xu}]_{\alpha_1\beta_1}^i = [f_z]_{\gamma_1}^i [z_{xu}]_{\alpha_1\beta_1}^{\gamma_1} + [f_{zz}]_{\gamma_1\gamma_2}^i [z_x]_{\alpha_1}^{\gamma_1} [z_u]_{\beta_1}^{\gamma_2}$$

$$F_{xu} = f_z z_{xu} + f_{zz} (z_x \otimes z_u)$$

- Kronecker product $(z_x \otimes z_u)$ unfolds $[z_x]_{\alpha_1}^{\gamma_1} [z_u]_{\beta_1}^{\gamma_2}$ correctly, because it has required (α_1, β_1) -ordering
- basic matrix multiplication rules as both z_{xu} and $(z_x \otimes z_u)$ are vectors

Tensor Unfolding $[F_{xxu}]^i_{\alpha_1\alpha_2\beta_1}$

$$\begin{split} [F_{xxu}]_{\alpha_{1}\alpha_{2}\beta_{1}}^{i} &= [f_{z}]_{\gamma_{1}}^{i} [z_{xxu}]_{\alpha_{1}\alpha_{2}\beta_{1}}^{\gamma_{1}} \\ &+ [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} \left([z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{xu}]_{\alpha_{2}\beta_{1}}^{\gamma_{2}} + [z_{x}]_{\alpha_{2}}^{\gamma_{1}} [z_{xu}]_{\alpha_{1}\beta_{1}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{xx}]_{\alpha_{1}\alpha_{2}}^{\gamma_{2}} \right) \\ &+ [f_{zzz}]_{\gamma_{1}\gamma_{2}\gamma_{3}}^{i} [z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{x}]_{\alpha_{2}}^{\gamma_{2}} [z_{u}]_{\beta_{1}}^{\gamma_{3}} \end{split}$$

 $F_{xxu} = f_z z_{xxu} + f_{zz} \left(\left(z_x \otimes z_{xu} \right) P_{x_xu}^2 + \left(z_{xx} \otimes z_u \right) \right) + f_{zzz} \left(z_x \otimes z_x \otimes z_u \right)$

Tensor Unfolding $[F_{xxu}]_{\alpha_1\alpha_2\beta_1}^i$

- red tensor terms contain same values but are summed in different ordering
 - $[z_x]_{\alpha_1}^{\gamma_1}[z_{xu}]_{\alpha_2\beta_1}^{\gamma_2}$ is consistent with $(\alpha_1,\alpha_2,\beta_1)$ -ordering, can be unfolded by

$$(z_x \otimes z_{xu})$$

 $[z_x]_{\alpha_2}^{\gamma_1}[z_{xu}]_{\alpha_1\beta_1}^{\gamma_2}$ is not consistent with $(\alpha_1,\alpha_2,\beta_1)$ -ordering, can be unfolded by

$$(z_x \otimes z_{xu}) P_{x_xu}$$

• P_{x_xu} is a permuted identity matrix

$$P_{x_xu}^2 = I + P_{x_xu}$$

Tensor Unfolding $[F_{xxu}]_{\alpha_1\alpha_2\beta_1}^i$

- green tensor is not consistent with $(\alpha_1, \alpha_2, \beta_1)$ -ordering, but
 - due to symmetry $[f_{zz}]_{\gamma_1\gamma_2}^{i}[z_u]_{\beta_1}^{\gamma_1}[z_{xx}]_{\alpha_1\alpha_2}^{\gamma_2} = [f_{zz}]_{\gamma_1\gamma_2}^{i}[z_{xx}]_{\alpha_1\alpha_2}^{\gamma_1}[z_u]_{\beta_1}^{\gamma_2}$
 - which is consistent with $(\alpha_1, \alpha_2, \beta_1)$ -ordering
 - can be unfolded by $f_{zz}(z_{xx} \otimes z_u)$

Tensor Unfolding $[F_{xuu}]^i_{\alpha_1\beta_1\beta_2}$

$$\begin{split} [F_{xuu}]_{\alpha_{1}\beta_{1}\beta_{2}}^{i} &= [f_{z}]_{\gamma_{1}}^{i} [z_{xuu}]_{\alpha_{1}\beta_{1}\beta_{2}}^{\gamma_{1}} \\ &+ [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} \left([z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{uu}]_{\beta_{1}\beta_{2}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{xu}]_{\alpha_{1}\beta_{2}}^{\gamma_{2}} + [z_{u}]_{\beta_{2}}^{\gamma_{1}} [z_{xu}]_{\beta_{2}}^{\gamma_{2}} + [z_{u}]_{\beta_{2}}^{\gamma_{1}} [z_{xu}]_{\beta_{2}}^{\gamma_{2}} \right) \\ &+ [f_{zzz}]_{\gamma_{1}\gamma_{2}\gamma_{3}}^{i} [z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{u}]_{\beta_{1}}^{\gamma_{2}} [z_{u}]_{\beta_{2}}^{\gamma_{3}} \end{split}$$

 $F_{xuu} = f_{z}z_{xxu} + f_{zz} \left(\left(z_x \otimes z_{uu} \right) + \left(z_{xu} \otimes z_u \right) P_{xu_u}^2 \right) + f_{zzz} \left(z_x \otimes z_u \otimes z_u \right)$

Tensor Unfolding $[F_{xuu}]^i_{\alpha_1\beta_1\beta_2}$

lacksquare green tensor is consistent with $(lpha_1,eta_1,eta_2)$ -ordering can be unfolded by $f_{zz}(z_x\otimes z_{uu})$

Tensor Unfolding $[F_{xuu}]_{\alpha_1\beta_1\beta_2}^i$

- red tensor terms contain same values but are summed in different ordering
 - $[z_u]_{\beta_2}^{\gamma_1}[z_{xu}]_{\alpha_1\beta_1}^{\gamma_2}$ is not consistent with $(\alpha_1, \alpha_2, \beta_1)$ -ordering, but due to symmetry of $[f_{zz}]_{\gamma_1\gamma_2}^i = [f_{zz}]_{\gamma_2\gamma_1}^i$, it can be unfolded by

$$(z_{xu} \otimes z_u)$$

 $[z_u]_{\beta_1}^{\gamma_1}[z_{xu}]_{\alpha_1\beta_2}^{\gamma_2}$ is not consistent with $(\alpha_1, \beta_1, \beta_2)$ -ordering, but due to symmetry of $[f_{zz}]_{\gamma_1\gamma_2}^i = [f_{zz}]_{\gamma_2\gamma_1}^i$, it can be unfolded by

$$(z_{xu} \otimes z_u) P_{xu_u}$$

- $\triangleright P_{xu}$ is a permuted identity matrix
- $P_{xu_u}^2 = I + P_{xu_u}$

Tensor Unfolding $[F_{xuu_+}]^i_{\alpha_1\beta_1\delta_1}$

$$\begin{split} [F_{xuu_{+}}]_{\alpha_{1}\beta_{1}\delta_{1}}^{i} &= [f_{z}]_{\gamma_{1}}^{i} [z_{xuu_{+}}]_{\alpha_{1}\beta_{1}\delta_{1}}^{\gamma_{1}} \\ &+ [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} \left([z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{uu_{+}}]_{\beta_{1}\delta_{1}}^{\gamma_{2}} + [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{xu_{+}}]_{\alpha_{1}\delta_{1}}^{\gamma_{2}} + [z_{u_{+}}]_{\delta_{1}}^{\gamma_{2}} [z_{xu}]_{\alpha_{1}\beta_{1}}^{\gamma_{2}} \right) \\ &+ [f_{zzz}]_{\gamma_{1}\gamma_{2}\gamma_{3}}^{i} [z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{u}]_{\beta_{1}}^{\gamma_{2}} [z_{u_{+}}]_{\delta_{1}}^{\gamma_{3}} \end{split}$$

$$F_{xuu_{+}} = f_{z}z_{xuu_{+}} + f_{zz}\left(\left(z_{x} \otimes z_{uu_{+}}\right) + \left(z_{xu_{+}} \otimes z_{u}\right)P_{xu_{+}u}^{1} + \left(z_{xu} \otimes z_{u_{+}}\right)\right) + f_{zzz}\left(z_{x} \otimes z_{u} \otimes z_{u_{+}}\right)$$

Tensor Unfolding $[F_{xuu_+}]^i_{\alpha_1\beta_1\delta_1}$

- red tensor is consistent with $(\alpha_1, \beta_1, \delta_1)$ -ordering can be unfolded by $(z_x \otimes z_{uu_+})$
- green tensor is not consistent with $(\alpha_1, \beta_1, \delta_1)$ -ordering, but
 - due to symmetry of $[f_{zz}]^i_{\gamma_1\gamma_2'}$ $[z_{xu_+}]^{\gamma_1}_{\alpha_1\delta_1}[z_u]^{\gamma_2}_{\beta_1}$ can be unfolded by $(z_{xu_+} \otimes z_u)P^1_{xu_+u}$
- blue tensor is not consistent with $(\alpha_1, \beta_1, \delta_1)$ -ordering, but
 - due to symmetry of $[f_{zz}]_{\gamma_1\gamma_2'}^i [z_{xu}]_{\alpha_1\beta_1}^{\gamma_1} [z_{u_+}]_{\delta_1}^{\gamma_2}$ can be unfolded by $(z_{xu} \otimes z_{u_+})$

Tensor Unfolding $[F_{u\sigma\sigma}]_{\beta_1}^l$

$$\begin{split} [F_{u\sigma\sigma}]_{\beta_{1}}^{i} &= [f_{z}]_{\gamma_{1}}^{i} [z_{u\sigma\sigma}]_{\beta_{1}}^{\gamma_{1}} \\ &+ [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} \left([z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{\sigma\sigma}]^{\gamma_{2}} + [z_{\sigma}]^{\gamma_{1}} [z_{u\sigma}]_{\beta_{1}}^{\gamma_{2}} + [z_{\sigma}]^{\gamma_{1}} [z_{u\sigma}]_{\beta_{1}}^{\gamma_{2}} \right) \\ &+ [f_{zzz}]_{\gamma_{1}\gamma_{2}\gamma_{3}}^{i} [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}} [z_{\sigma}]^{\gamma_{3}} \\ F_{u\sigma\sigma} &= f_{z} z_{u\sigma\sigma} + f_{zz} \left((z_{u} \otimes z_{\sigma\sigma}) + (z_{u\sigma} \otimes z_{\sigma}) P_{u\sigma_{-}\sigma}^{2} \right) + f_{zzz} \left(z_{u} \otimes z_{\sigma} \otimes z_{\sigma} \right) \end{split}$$

Tensor Unfolding $[F_{u\sigma\sigma}]^i_{\beta_1}$

- red tensor is consistent with (β_1) -ordering can be unfolded by $(z_u \otimes z_{\sigma\sigma})$
- green tensor is just a product of vectors, we could simply use Kronecker product, but to keep in the flow of the algorithm:
 - due to symmetry of $[f_{zz}]^i_{\gamma_1\gamma_2'}[z_{u\sigma}]^{\gamma_1}_{\beta_1}[z_{\sigma}]^{\gamma_2}$ can be unfolded by $(z_{u\sigma} \otimes z_{\sigma})P_{u\sigma}$

$$P_{u\sigma_\sigma}^2 = P_{u\sigma_\sigma} + P_{u\sigma_\sigma} = 2$$

Perturbation Approximation

Algorithm

objective is to find the coefficients of the k-order Taylor expansion of *g*:

$$g_{x^{q_{u}p_{\sigma}k-q-p}} := \frac{\partial^{k}g(\bar{x},0,0)}{\partial x \dots \partial x \cdot \partial u \dots \partial u \cdot \partial \sigma \dots \partial \sigma}$$

$$q \text{ times} \quad p \text{ times} \quad k-q-p \text{ times}$$

where $0 \le p, q \le k$ and $0 \le p + q \le k$

algorithm is recursive:

• find all coefficients for k = 1, then find all coefficients for k = 2, then find all coefficients for k = 3, ...

• first-order Taylor expansion of the *i*-th equation of F around $\bar{r} = (\bar{x}, 0, 0, 0)$ is in tensor notation:

$$[F(r)]^{i} \approx [F(\bar{r})]^{i} + [F_{x}]_{\alpha_{1}}^{i} [\hat{x}]^{\alpha_{1}} + [F_{u}]_{\beta_{1}}^{i} [u]^{\beta_{1}} + [F_{\sigma}]^{i} \sigma + [F_{u_{+}}]_{\delta_{1}}^{i} [u_{+}]^{\delta_{1}}$$

taking conditional expectation and setting it to zero yields:

$$0 = [F(\bar{r})]^i + [F_x]^i_{\alpha_1} [\hat{x}]^{\alpha_1} + [F_u]^i_{\beta_1} [u]^{\beta_1} + \left([F_\sigma]^i + [F_{u_+}]^i_{\delta_1} [\Sigma^{(1)}]^{\delta_1} \right) \sigma$$

• note that $\left[F(\bar{r})\right]^i=0$ and $\left[\Sigma^{(1)}\right]^{\delta_1}$ is the δ_1 entry of $\Sigma^{(1)}=E_t\{\eta_{t+1}\}$

$$0 = [F_x]_{\alpha_1}^i [\hat{x}]^{\alpha_1} + [F_u]_{\beta_1}^i [u]^{\beta_1} + \left([F_\sigma]^i + [F_{u_+}]_{\delta_1}^i [\Sigma^{(1)}]^{\delta_1} \right) \sigma$$

- this equation needs to be satisfied for any value of \hat{x} , u and σ
- necessary and sufficient conditions to recover the first-order partial derivatives of g with respect to x, u and σ can be retrieved from:

$$[F_x]_{\alpha_1}^i = 0, \qquad [F_u]_{\beta_1}^i = 0, \qquad [F_\sigma]^i + [F_{u_+}]_{\delta_1}^i [\Sigma^{(1)}]^{\delta_1} = 0$$

$$[F_x]_{\alpha_1}^i = 0, \qquad [F_u]_{\beta_1}^i = 0, \qquad [F_\sigma]^i + [F_{u_+}]_{\delta_1}^i [\Sigma^{(1)}]^{\delta_1} = 0$$

computation is done in sequence:

- recover g_x
- recover g_{μ}
- recover g_{σ}

First-order Approximation Recovering g_x

Reminder

$$r := \begin{pmatrix} x \\ u \\ u_+ \\ \sigma \end{pmatrix}$$

[input vector for F and G]

$$w(r) := \begin{pmatrix} y_0^* \\ u_+ \\ \sigma \end{pmatrix} = \begin{pmatrix} g^*(x, u, \sigma) \\ u_+ \\ \sigma \end{pmatrix}$$

[input vector for g^{**}]

$$z(r) := \begin{pmatrix} y_{-}^{*} \\ y \\ y_{+}^{**} \\ u \end{pmatrix} = \begin{pmatrix} x \\ g(x, u, \sigma) \\ G(x, u, u_{+}, \sigma) \\ u \end{pmatrix} = \begin{pmatrix} x \\ g(x, u, \sigma) \\ g^{**}(g^{*}(x, u, \sigma), u_{+}, \sigma) \\ u \end{pmatrix}$$

[input vector for f]

Recovering g_{χ}

Tensors

$$[w_x]_{\alpha_1} = \begin{bmatrix} g_x^*]_{\alpha_1} \\ 0 \\ 0 \end{bmatrix}$$

$$[G_x]_{\alpha_1}^l = [g_w^{**}]_{\phi_1}^l [w_x]_{\alpha_1}^{\phi_1} = [g_x^{**}]_{\rho_1}^l [g_x^{*}]_{\alpha_1}^{\rho_1}$$

$$\begin{bmatrix} [I_x]_{\alpha_1} \\ [g_x]_{\alpha_1} \end{bmatrix} = \begin{bmatrix} [g_x]_{\alpha_1} \\ [G_x]_{\alpha_1} \\ 0 \end{bmatrix}$$

$$[F_x]_{\alpha_1}^i = [f_z]_{\gamma_1}^i [z_x]_{\alpha_1}^{\gamma_1}$$

Matrix

$$w_x = \begin{pmatrix} g_x^* \\ 0 \\ 0 \end{pmatrix}$$

$$G_x = g_w^{**} w_x = g_x^{**} g_x^{*}$$

$$z_{x} = \begin{pmatrix} I_{x} \\ g_{x} \\ G_{x} \\ 0 \end{pmatrix}$$

$$F_{x} = f_{z}z_{x}$$

$$[F_x]_{\alpha_1}^i = [f_z]_{\gamma_1}^i [z_x]_{\alpha_1}^{\gamma_1} = [f_{y_-^*}]_{\alpha_1}^i + [f_{y_0}]_{\rho_1^0}^i [g_x]_{\alpha_1}^{\rho_1^0} + [f_{y_+^{**}}]_{\rho_1^+}^i [g_x^{**}]_{\rho_1^+}^{\rho_1^+} [g_x^{**}]_{\alpha_1}^{\rho_1} = 0$$

where $[f_{y_{-}^*}]_{\alpha_1'}^i$, $[f_{y_0}]_{\rho_1^0}^i$ and $[f_{y_{+}^**}]_{\rho_1^+}^i$ are the first partial derivatives of equation i of f with respect to $[y_{t-1}^*]_{\alpha_1'}$, $[y_t]_{\rho_1^0}$ and $[y_{t+1}^{***}]_{\rho_1^+}$, respectively.

Tensor Unfolding yields the corresponding matrix representation:

$$F_{x} = f_{z}z_{x} = f_{y^{*}} + f_{y_{0}}g_{x} + f_{y^{*}}g_{x}^{*} = 0$$

$$[F_x]_{\alpha_1}^i = [f_z]_{\gamma_1}^i [z_x]_{\alpha_1}^{\gamma_1} = [f_{y_-^*}]_{\alpha_1}^i + [f_{y_0}]_{\rho_1^0}^i [g_x]_{\alpha_1}^{\rho_1^0} + [f_{y_+^{**}}]_{\rho_1^+}^i [g_x^{**}]_{\rho_1}^{\rho_1^+} [g_x^{**}]_{\alpha_1}^{\rho_1} = 0$$

$$F_x = f_z z_x = f_{y_-^*} + f_{y_0} g_x + f_{y_+^{**}} g_x^{**} g_x^{**} = 0$$

this is a quadratic matrix equation, solving it is equivalent to finding a solution to linearized rational expectations models for which different algorithms have been proposed.

Dynare uses algorithm outlined in Villemot (2011), see other presentation.

Perturbation Matrices

important auxiliary perturbation matrices:

$$A = f_{y_0} + \left(\begin{array}{c} 0 \\ n \times n^{static} \end{array} \right) \underbrace{f_{y_+^* *} g_x^{**}}_{n \times n^{spred}} : \underbrace{0}_{n \times n^{fwrd}} \right)$$

$$B = \begin{pmatrix} 0 & \vdots & 0 & \vdots & f_{y_{+}^{**}} \\ n \times n^{static} & n \times n^{pred} & n \times n^{sfwrd} \end{pmatrix}$$

First-order Approximation Recovering g_u

Recovering gu

Tensors

$$[w_u]_{\beta_1} = \begin{bmatrix} g_u^*]_{\beta_1} \\ 0 \\ 0 \end{bmatrix}$$

$$[G_u]_{\beta_1}^i = [g_w^{**}]_{\phi_1}^i [w_u]_{\beta_1}^{\phi_1} = [g_x^{**}]_{\rho_1}^i [g_u^{*}]_{\beta_1}^{\rho_1}$$

$$\begin{bmatrix} z_u \\ \beta_1 \end{bmatrix} = \begin{bmatrix} g_u \\ G_u \\ \beta_1 \end{bmatrix}$$

$$\begin{bmatrix} I_u \\ \beta_1 \end{bmatrix}$$

$$[F_u]_{\beta_1}^i = [f_z]_{\gamma_1}^i [z_u]_{\beta_1}^{\gamma_1}$$

Matrix

$$w_u = \begin{pmatrix} g_u^* \\ 0 \\ 0 \end{pmatrix}$$

$$G_u = g_w^{**} w_u = g_x^{**} g_u^{*}$$

$$z_{u} = \begin{pmatrix} 0 \\ g_{u} \\ G_{u} \\ I_{u} \end{pmatrix}$$

$$F_u = f_z z_u$$

Recovering gu

$$[F_u]_{\beta_1}^i = [f_z]_{\gamma_1}^i [z_u]_{\beta_1}^{\gamma_1} = [f_{y_0}]_{\rho_1^0}^i [g_u]_{\beta_1}^{\rho_1^0} + [f_{y_+^{**}}]_{\rho_1^+}^i [g_x^{**}]_{\rho_1}^{\rho_1^+} [g_u^{**}]_{\beta_1}^{\rho_1} + [f_u]_{\beta_1}^i = 0$$

where $[f_u]_{\beta_1}^i$ is the first partial derivative of equation i of f with respect to $[u]_{\beta_1}$.

Tensor Unfolding yields the corresponding matrix representation:

$$F_u = f_z z_u = f_{y_0} g_u + f_{y_+^*} g_x^{**} g_u^* + f_u = A g_u + f_u = 0$$

taking the inverse of A yields g_u :

$$g_u = -A^{-1} f_u$$

First-order Approximation Recovering g_{σ}

Recovering 85

Tensors

$$\begin{bmatrix} w_{u_{+}} \end{bmatrix}_{\delta_{1}} = \begin{bmatrix} 0 \\ [I_{u}]_{\delta_{1}} \\ 0 \end{bmatrix}, [w_{\sigma}] = \begin{bmatrix} [g_{\sigma}^{*}] \\ 0 \\ 1 \end{bmatrix}$$

$$[G_{u_{+}}]_{\delta_{1}}^{i} = [g_{w}^{**}]_{\phi_{1}}^{i} [w_{u_{+}}]_{\delta_{1}}^{\phi_{1}} = [g_{u}^{**}]_{\psi_{1}}^{i} [I_{u}]_{\delta_{1}}^{\psi_{1}}$$

$$[G_{\sigma}]^{l} = [g_{w}^{**}]^{l}_{\phi_{1}}[w_{\sigma}]^{\phi_{1}}_{\alpha_{1}} = [g_{x}^{**}]^{l}_{\rho_{1}}[g_{\sigma}^{*}]^{\rho_{1}} + [g_{\sigma}^{**}]^{l}$$

$$\begin{bmatrix} z_{u_{+}} \end{bmatrix}_{\delta_{1}} = \begin{bmatrix} 0 \\ 0 \\ [G_{u_{+}}]_{\delta_{1}} \end{bmatrix}, [z_{\sigma}] = \begin{bmatrix} 0 \\ [g_{\sigma}] \\ [G_{\sigma}] \end{bmatrix}$$

$$[F_{u_+}]_{\delta_1}^i = [f_z]_{\gamma_1}^i [z_{u_+}]_{\delta_1}^{\gamma_1}$$

$$[F_{\sigma}]^i = [f_z]^i_{\gamma_1} [z_{\sigma}]^{\gamma_1}$$

Matrix

$$w_{u_{+}} = \begin{pmatrix} 0 \\ I_{u} \\ 0 \end{pmatrix}, w_{\sigma} = \begin{pmatrix} g_{\sigma}^{*} \\ 0 \\ 1 \end{pmatrix}$$

$$G_{u_{+}} = g_{w}^{**} w_{u_{+}} = g_{u}^{**}$$

$$G_{\sigma} = g_{w}^{**} w_{\sigma} = g_{x}^{**} g_{\sigma}^{*} + g_{\sigma}^{**}$$

$$z_{u_{+}} = \begin{pmatrix} 0 \\ 0 \\ G_{u_{+}} \end{pmatrix}, z_{\sigma} = \begin{pmatrix} 0 \\ g_{\sigma} \\ G_{\sigma} \\ 0 \end{pmatrix}$$

$$F_{u_+} = f_z z_{u_+}$$

$$F_{\sigma} = f_{z}z_{\sigma}$$

Recovering 85

$$0 = [F_{\sigma}]^{i} + [F_{u_{+}}]^{i}_{\delta_{1}} [\Sigma^{(1)}]^{\delta_{1}} = [f_{z}]^{i}_{\gamma_{1}} [z_{\sigma}]^{\gamma_{1}} + [f_{z}]^{i}_{\gamma_{1}} [z_{u_{+}}]^{\gamma_{1}}_{\delta_{1}} [\Sigma^{(1)}]^{\delta_{1}}$$

$$0 = [f_{y_0}]_{\rho_1^0}^i [g_{\sigma}]^{\rho_1^0} + [f_{y_+^{**}}]_{\rho_1^+}^i \Big([g_{x}^{**}]_{\rho_1}^{\rho_1^+} [g_{\sigma}^{*}]^{\rho_1} + [g_{x}^{**}]_{\rho_1^+}^{\rho_1^+} \Big) + [f_{y_+^{**}}]_{\rho_1^+}^i [g_{u}^{**}]_{\delta_1}^{\rho_1^+} [\Sigma^{(1)}]^{\delta_1}$$

Tensor Unfolding yields the corresponding matrix representation:

$$0 = F_{\sigma} + F_{u_{+}} \Sigma^{(1)} = f_{z} z_{\sigma} + f_{z} z_{u_{+}} \Sigma^{(1)}$$

$$0 = f_{y_0} g_{\sigma} + f_{y_+^{**}} \left(g_x^{**} g_{\sigma}^* + g_{\sigma}^{**} \right) + f_{y_+^{**}} g_u^{**} \Sigma^{(1)} = (A + B) g_{\sigma} + f_{y_+^{**}} g_u^{**} \Sigma^{(1)}$$

taking the inverse of (A + B) yields

$$g_{\sigma} = -(A+B)^{-1} \left(f_{y_{+}^{**}} g_{u}^{**} \Sigma^{(1)} \right)$$

because the first moment $\Sigma^{(1)}$ is zero by assumption, we get: $g_{\sigma}=0$

Certainty Equivalence $g_{\sigma} = 0$

when we derived the optimality conditions (aka model equations) agents do take into account the effect of future uncertainty when optimizing their objective functions.

BUT: the first-order approximated policy function is independent of the size of the stochastic innovations:

$$y_{t} = g_{x} y_{t-1}^{*} + g_{u} u_{t}$$

future uncertainty does not matter for the decision rules of the agents at first order

certainty equivalence is a result of the first-order perturbation approximation, we can break it with e.g. higher-order perturbation approximation

second-order Taylor expansion of the *i*-th equation of F around $\bar{r} = (\bar{x},0,0,0)$ is in tensor notation:

$$[F(r)]^{i} \approx [F(\bar{r})]^{i} + [F_{x}]_{\alpha_{1}}^{i} [\hat{x}]^{\alpha_{1}} + [F_{u}]_{\beta_{1}}^{i} [u]^{\beta_{1}} + [F_{u_{+}}]_{\delta_{1}}^{i} [u_{+}]^{\delta_{1}} + [F_{\sigma}]^{i} \sigma$$

$$+\frac{1}{2}\left(\left[F_{xx}\right]_{\alpha_{1}\alpha_{2}}^{i}[\hat{x}]^{\alpha_{1}}[\hat{x}]^{\alpha_{2}}+\left[F_{uu}\right]_{\beta_{1}\beta_{2}}^{i}[u]^{\beta_{1}}[u]^{\beta_{2}}+\left[F_{u_{+}u_{+}}\right]_{\delta_{1}\delta_{2}}^{i}[u_{+}]^{\delta_{1}}[u_{+}]^{\delta_{2}}+\left[F_{\sigma\sigma}\right]^{i}\sigma\sigma\right)$$

$$+\frac{2}{2}\left(\left[F_{xu}\right]_{\alpha_{1}\beta_{1}}^{i}[\hat{x}]^{\alpha_{1}}[u]^{\beta_{1}}+\left[F_{xu_{+}}\right]_{\alpha_{1}\delta_{1}}^{i}[\hat{x}]^{\alpha_{1}}[u_{+}]^{\delta_{1}}+\left[F_{x\sigma}\right]_{\alpha_{1}}^{i}[\hat{x}]^{\alpha_{1}}\sigma+\left[F_{uu_{+}}\right]_{\beta_{1}\delta_{1}}^{i}[u]^{\beta_{1}}[u_{+}]^{\delta_{1}}+\left[F_{u\sigma}\right]_{\beta_{1}}^{i}[u]^{\beta_{1}}\sigma+\left[F_{u_{+}\sigma}\right]_{\delta_{1}}^{i}[u_{+}]^{\delta_{1}}\sigma\right)$$

taking conditional expectation and setting it to zero yields:

$$\begin{split} 0 &= [F(\bar{r})]^i + [F_x]^i_{\alpha_1}[\hat{x}]^{\alpha_1} + [F_u]^i_{\beta_1}[u]^{\beta_1} + \left([F_\sigma]^i + [F_{u_+}]^i_{\delta_1}[\Sigma^{(1)}]^{\delta_1} \right) \sigma \\ &\quad + \frac{1}{2} \left(\ [F_{xx}]^i_{\alpha_1\alpha_2}[\hat{x}]^{\alpha_1}[\hat{x}]^{\alpha_2} + [F_{uu}]^i_{\beta_1\beta_2}[u]^{\beta_1}[u]^{\beta_2} + \left([F_{\sigma\sigma}]^i + [F_{u_+u_+}]^i_{\delta_1\delta_2}[\Sigma^{(2)}]^{\delta_1\delta_2} + 2[F_{u_+\sigma}]^i_{\delta_1}[\Sigma^{(1)}]^{\delta_1} \right) \sigma \sigma \ \right) \\ &\quad + \frac{2}{2} \left(\ [F_{xu}]^i_{\alpha_1\beta_1}[\hat{x}]^{\alpha_1}[u]^{\beta_1} + \left([F_{x\sigma}]^i_{\alpha_1} + [F_{xu_+}]^i_{\alpha_1\delta_1}[\Sigma^{(1)}]^{\delta_1} \right) [\hat{x}]^{\alpha_1} \sigma + \left([F_{u\sigma}]^i_{\beta_1} + [F_{uu_+}]^i_{\beta_1\delta_1}[\Sigma^{(1)}]^{\delta_1} \right) [u]^{\beta_1} \sigma \ \right) \end{split}$$

note that $\left[F(\bar{r})\right]^i=0$ and $\left[\Sigma^{(1)}\right]^{\delta_1}$ is the δ_1 entry of $\Sigma^{(1)}=E_t\{\eta_{t+1}\}$ and $\left[\Sigma^{(2)}\right]^{\delta_1\delta_2}$ denotes the covariance between $[\eta_t]_{\delta_1}$ and $[\eta_t]_{\delta_2}$

this equation needs to be satisfied for any value of \hat{x} , u and σ

necessary and sufficient conditions to recover the second-order partial derivatives of g with respect to xx, xu, $x\sigma$, uu, $u\sigma$ and $\sigma\sigma$:

for
$$g_{xx}$$
: $0 = [F_{xx}]_{\alpha_1\alpha_2}^i$

for
$$g_{uu}$$
: $0 = \left[F_{uu}\right]_{\beta_1\beta_2}^i$

for
$$g_{xu}$$
: $0 = \left[F_{xu}\right]_{\alpha_1\beta_1}^i$

for
$$g_{x\sigma}$$
: $0 = [F_{x\sigma}]_{\alpha_1}^i + [F_{xu_+}]_{\alpha_1\delta_1}^i [\Sigma^{(1)}]^{\delta_1}$

for
$$g_{u\sigma}$$
: $0 = [F_{u\sigma}]_{\beta_1}^i + [F_{uu}]_{\beta_1\delta_1}^i [\Sigma^{(1)}]^{\delta_1}$

for
$$g_{\sigma\sigma}$$
: $0 = [F_{\sigma\sigma}]^i + [F_{u_+u_+}]^i_{\delta_1\delta_2} [\Sigma^{(2)}]^{\delta_1\delta_2} + 2[F_{u_+\sigma}]^i_{\delta_1} [\Sigma^{(1)}]^{\delta_1}$

Second-order Approximation Recovering g_{xx}

Tensors

$$[w_{xx}]_{\alpha_1\alpha_2} = \begin{bmatrix} [g_{xx}^*]_{\alpha_1\alpha_2} \\ 0 \\ 0 \end{bmatrix}$$

$$[G_{xx}]_{\alpha_1\alpha_2}^{l} = [g_w^{**}]_{\phi_1}^{l} [w_{xx}]_{\alpha_1\alpha_2}^{\phi_1} + [g_{ww}^{**}]_{\phi_1\phi_2}^{l} [w_x]_{\alpha_1}^{\phi_1} [w_x]_{\alpha_2}^{\phi_2}$$

$$= [g_x^{**}]_{\rho_1}^l [g_{xx}^*]_{\alpha_1\alpha_2}^{\rho_1} + [g_{xx}^{**}]_{\rho_1\rho_2}^l [g_x^*]_{\alpha_1}^{\rho_1} [g_x^*]_{\alpha_2}^{\rho_2}$$

$$\begin{bmatrix} z_{xx} \end{bmatrix}_{\alpha_1 \alpha_2} = \begin{bmatrix} 0 \\ [g_{xx}]_{\alpha_1 \alpha_2} \\ [G_{xx}]_{\alpha_1 \alpha_2} \end{bmatrix}$$

$$[F_{xx}]_{\alpha_1\alpha_2}^i = [f_z]_{\gamma_1}^i [z_{xx}]_{\alpha_1\alpha_2}^{\gamma_1} + [f_{zz}]_{\gamma_1\gamma_2}^i [z_x]_{\alpha_1}^{\gamma_1} [z_x]_{\alpha_2}^{\gamma_2}$$

Matrix

$$w_{xx} = \begin{pmatrix} g_{xx}^* \\ 0 \\ 0 \end{pmatrix}$$

$$G_{xx} = g_w^{**} w_{xx} + g_{ww}^{**} \left(w_x \otimes w_x \right)$$

$$= g_{x}^{**}g_{xx}^{*} + g_{xx}^{**} (g_{x}^{*} \otimes g_{x}^{*})$$

$$z_{xx} = \begin{pmatrix} 0 \\ g_{xx} \\ G_{xx} \\ 0 \end{pmatrix}$$

$$F_{xx} = f_z z_{xx} + f_{zz} \left(z_x \otimes z_x \right)$$

$$[F_{xx}]_{\alpha_1\alpha_2}^i = [f_z]_{\gamma_1}^i [z_{xx}]_{\alpha_1\alpha_2}^{\gamma_1} + [f_{zz}]_{\gamma_1\gamma_2}^i [z_x]_{\alpha_1}^{\gamma_1} [z_x]_{\alpha_2}^{\gamma_2} = 0$$

Tensor Unfolding yields the corresponding matrix representation:

$$F_{xx} = f_z z_{xx} + f_{zz} \left(z_x \otimes z_x \right) = 0$$

developing terms, we can simplify this using perturbation matrices A and B:

$$Ag_{xx} + Bg_{xx} \left(g_x^* \otimes g_x^* \right) = -f_{zz} \left(z_x \otimes z_x \right)$$

$$Ag_{xx} + Bg_{xx} \left(g_x^* \otimes g_x^* \right) = -f_{zz} \left(z_x \otimes z_x \right)$$

this is a *Generalized Sylvester Equation* for which Dynare uses specialized and very efficient algorithms

$$Ag_{xx} + Bg_{xx} \left(g_x^* \otimes g_x^* \right) = -f_{zz} \left(z_x \otimes z_x \right)$$

- $Arr RHS = f_{zz} (z_x \otimes z_x)$ contains only first-order terms
- RHS can be computed by evaluating Faà di Bruno's formula for $[F_{xx}]_{\alpha_1\alpha_2}^i$ and $[G_{xx}]_{\alpha_1\alpha_2}^i$ conditional on $[g_{xx}]_{\alpha_1\alpha_2}^i = 0$:

$$[G_{xx}^{cond}]_{\alpha_{1}\alpha_{2}}^{l} = [g_{x}^{**}]_{\rho_{1}}^{l}[g_{xx}^{*}]_{\alpha_{1}\alpha_{2}}^{\rho_{1}} + [g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{l}[g_{x}^{*}]_{\alpha_{1}}^{\rho_{1}}[g_{x}^{*}]_{\alpha_{2}}^{\rho_{2}} = 0$$

$$\begin{bmatrix} z_{xx}^{cond} \end{bmatrix}_{\alpha_1 \alpha_2} = \begin{bmatrix} 0 \\ [g_{xx}]_{\alpha_1 \alpha_2} \\ [G_{xx}]_{\alpha_1 \alpha_2} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$[F_{xx}^{cond}]_{\alpha_{1}\alpha_{2}}^{i} = [f_{z}]_{\gamma_{1}}^{i} [z_{xx}^{cond}]_{\alpha_{1}\alpha_{2}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{x}]_{\alpha_{2}}^{\gamma_{2}} = [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{x}]_{\alpha_{2}}^{\gamma_{2}}$$

▶ Tensor Unfolding: $F_{xx}^{cond} = f_{zz} (z_x \otimes z_x)$

Second-order Approximation Recovering g_{uu}

Recovering 8uu

Tensors

$$[w_{uu}]_{\beta_1\beta_2} = \begin{bmatrix} [g_{uu}^*]_{\beta_1\beta_2} \\ 0 \\ 0 \end{bmatrix}$$

$$[G_{uu}]_{\beta_1\beta_2}^i = [g_w^{**}]_{\phi_1}^i [w_{uu}]_{\beta_1\beta_2}^{\phi_1} + [g_{ww}^{**}]_{\phi_1\phi_2}^i [w_u]_{\beta_1}^{\phi_1} [w_u]_{\beta_2}^{\phi_2}$$

$$= [g_x^{**}]_{\rho_1}^{l} [g_{uu}^{*}]_{\beta_1\beta_2}^{\rho_1} + [g_{xx}^{**}]_{\rho_1\rho_2}^{l} [g_u^{*}]_{\beta_1}^{\rho_1} [g_u^{*}]_{\beta_2}^{\rho_2}$$

$$\begin{bmatrix} z_{uu} \end{bmatrix}_{\beta_1 \beta_2} = \begin{bmatrix} 0 \\ [g_{uu}]_{\beta_1 \beta_2} \\ [G_{uu}]_{\beta_1 \beta_2} \end{bmatrix}$$

$$[F_{uu}]_{\beta_1\beta_2}^i = [f_z]_{\gamma_1}^i [z_{uu}]_{\beta_1\beta_2}^{\gamma_1} + [f_{zz}]_{\gamma_1\gamma_2}^i [z_u]_{\beta_1}^{\gamma_1} [z_u]_{\beta_2}^{\gamma_2}$$

Matrix

$$w_{uu} = \begin{pmatrix} g_{uu}^* \\ 0 \\ 0 \end{pmatrix}$$

$$G_{uu} = g_w^{**} w_{uu} + g_{ww}^{**} (w_u \otimes w_u)$$

$$= g_x^{**}g_{uu}^* + g_{xx}^{**} (g_u^* \otimes g_u^*)$$

$$z_{uu} = \begin{pmatrix} 0 \\ g_{uu} \\ G_{uu} \\ 0 \end{pmatrix}$$

$$F_{uu} = f_z z_{uu} + f_{zz} \left(z_u \otimes z_u \right)$$

Recovering 8_{uu}

$$[F_{uu}]_{\beta_1\beta_2}^i = [f_z]_{\gamma_1}^i [z_{uu}]_{\beta_1\beta_2}^{\gamma_1} + [f_{zz}]_{\gamma_1\gamma_2}^i [z_u]_{\beta_1}^{\gamma_1} [z_u]_{\beta_2}^{\gamma_2} = 0$$

Tensor Unfolding yields the corresponding matrix representation:

$$F_{uu} = f_z z_{uu} + f_{zz} \left(z_u \otimes z_u \right) = 0$$

developing terms, we can simplify this using perturbation matrix A:

$$Ag_{uu} = -\left(f_{y_{+}^{**}}g_{xx}^{**}\left(g_{u}^{*} \otimes g_{u}^{*}\right) + f_{zz}\left(z_{u} \otimes z_{u}\right)\right)$$

Recovering 8uu

$$Ag_{uu} = -\left(f_{y_{+}^{**}}g_{xx}^{**}\left(g_{u}^{*}\otimes g_{u}^{*}\right) + f_{zz}\left(z_{u}\otimes z_{u}\right)\right)$$

- note that the right-hand side contains only objects that are already available from the first-order approximation and previously computed g_{xx}
- taking the inverse of A yields g_{uu}

Recovering 8_{uu}

$$Ag_{uu} = -\left(f_{y_{+}^{*}}g_{xx}^{**}\left(g_{u}^{*} \otimes g_{u}^{*}\right) + f_{zz}\left(z_{u} \otimes z_{u}\right)\right)$$

▶ $RHS = f_{y_+^**}g_{xx}^{**} \left(g_u^* \otimes g_u^*\right) + f_{zz} \left(z_u \otimes z_u\right)$ can be computed by evaluating $Fa\grave{a}$ di Bruno's formula for $[F_{uu}]_{\beta_1\beta_2}^i$ and $[G_{uu}]_{\beta_1\beta_2}^i$ conditional on $[g_{uu}]_{\beta_1\beta_2}^i = 0$:

$$[G_{uu}^{cond}]_{\beta_1\beta_2}^l = [g_x^{**}]_{\rho_1}^l [g_{uu}^{*}]_{\beta_1\beta_2}^{\rho_1} + [g_{xx}^{**}]_{\rho_1\rho_2}^l [g_u^{*}]_{\beta_1}^{\rho_1} [g_u^{*}]_{\beta_2}^{\rho_2} = [g_{xx}^{**}]_{\rho_1\rho_2}^l [g_u^{*}]_{\beta_1}^{\rho_1} [g_u^{*}]_{\beta_2}^{\rho_2}$$

$$[z_{uu}^{cond}]_{\beta_1\beta_2} = \begin{bmatrix} 0 \\ [g_{uu}]_{\beta_1\beta_2} \\ [G_{uu}]_{\beta_1\beta_2} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ [G_{uu}]_{\beta_1\beta_2} \\ 0 \end{bmatrix}$$

$$[F_{uu}^{cond}]_{\beta_{1}\beta_{2}}^{i} = [f_{z}]_{\gamma_{1}}^{i} [z_{uu}^{cond}]_{\beta_{1}\beta_{2}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{u}]_{\beta_{2}}^{\gamma_{2}} = [f_{y_{+}^{**}}]_{\rho_{1}^{+}}^{i} [g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{\rho_{1}^{+}} [g_{u}^{*}]_{\beta_{1}}^{\rho_{2}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{u}]_{\beta_{1}}^{\gamma_{2}} [z_{u}]_{\beta_{2}}^{\gamma_{2}}$$

Tensor Unfolding: $F_{uu}^{cond} = f_{y_+^{**}} g_{xx}^{**} \left(g_u^* \otimes g_u^* \right) + f_{zz} \left(z_u \otimes z_u \right)$

Second-order Approximation Recovering g_{xu}

Recovering g_{xu}

Tensors

$$[w_{xu}]_{\alpha_1\beta_1} = \begin{bmatrix} [g_{xu}^*]_{\alpha_1\beta_1} \\ 0 \\ 0 \end{bmatrix}$$

$$[G_{xu}]_{\alpha_1\beta_1}^{l} = [g_w^{**}]_{\phi_1}^{l} [w_{xu}]_{\alpha_1\beta_1}^{\phi_1} + [g_{ww}^{**}]_{\phi_1\phi_2}^{l} [w_x]_{\alpha_1}^{\phi_1} [w_u]_{\beta_1}^{\phi_2}$$

$$= [g_x^{**}]_{\rho_1}^{l} [g_{xu}^{*}]_{\alpha_1\beta_1}^{\rho_1} + [g_{xx}^{**}]_{\rho_1\rho_2}^{l} [g_x^{*}]_{\alpha_1}^{\rho_1} [g_u^{*}]_{\beta_1}^{\rho_2}$$

$$\begin{bmatrix} z_{xu} \end{bmatrix}_{\alpha_1 \beta_1} = \begin{bmatrix} 0 \\ [g_{xu}]_{\alpha_1 \beta_1} \\ [G_{xu}]_{\alpha_1 \beta_1} \end{bmatrix}$$

$$[F_{xu}]_{\alpha_1\beta_1}^i = [f_z]_{\gamma_1}^i [z_{xu}]_{\alpha_1\beta_1}^{\gamma_1} + [f_{zz}]_{\gamma_1\gamma_2}^i [z_x]_{\alpha_1}^{\gamma_1} [z_u]_{\beta_1}^{\gamma_2}$$

Matrix

$$w_{xu} = \begin{pmatrix} g_{xu}^* \\ 0 \\ 0 \end{pmatrix}$$

$$G_{xu} = g_w^{**} w_{xu} + g_{ww}^{**} (w_x \otimes w_u)$$

$$= g_{x}^{**}g_{xu}^{*} + g_{xx}^{**} (g_{x}^{*} \otimes g_{u}^{*})$$

$$z_{xu} = \begin{pmatrix} 0 \\ g_{xu} \\ G_{xu} \\ 0 \end{pmatrix}$$

$$F_{xu} = f_z z_{xu} + f_{zz} \left(z_x \otimes z_u \right)$$

Recovering gxu

$$[F_{xu}]_{\alpha_1\beta_1}^i = [f_z]_{\gamma_1}^i [z_{xu}]_{\alpha_1\beta_1}^{\gamma_1} + [f_{zz}]_{\gamma_1\gamma_2}^i [z_x]_{\alpha_1}^{\gamma_1} [z_u]_{\beta_1}^{\gamma_2} = 0$$

Tensor Unfolding yields the corresponding matrix representation:

$$F_{xu} = f_z z_{xu} + f_{zz} \left(z_x \otimes z_u \right) = 0$$

developing terms, we can simplify this using perturbation matrix A:

$$Ag_{xu} = -\left(f_{y_+^{**}}g_{xx}^{**}\left(g_x^*\otimes g_u^*\right) + f_{zz}\left(z_x\otimes z_u\right)\right)$$

Recovering 8xu

$$Ag_{xu} = -\left(f_{y_+^{**}}g_{xx}^{**}\left(g_x^*\otimes g_u^*\right) + f_{zz}\left(z_x\otimes z_u\right)\right)$$

- note that the right-hand side contains only objects that are already available from the first-order approximation and previously computed g_{xx}
- taking the inverse of A yields g_{xu}

Recovering gxu

$$Ag_{xu} = -\left(f_{y_{+}^{**}}g_{xx}^{**}\left(g_{x}^{*} \otimes g_{u}^{*}\right) + f_{zz}\left(z_{x} \otimes z_{u}\right)\right)$$

▶ $RHS = f_{y_+^{**}}g_{xx}^{**} \left(g_x^{*} \otimes g_u^{*}\right) + f_{zz}\left(z_x \otimes z_u\right)$ can be computed by evaluating $Fa\grave{a}$ di Bruno's formula for $[F_{xu}]_{\alpha_1\beta_1}^i$ and $[G_{xu}]_{\alpha_1\beta_1}^i$ conditional on $[g_{xu}]_{\alpha_1\beta_1}^i = 0$:

$$[G_{xu}^{cond}]_{\alpha_{1}\beta_{1}}^{l} = [g_{x}^{**}]_{\rho_{1}}^{l}[g_{xu}^{*}]_{\alpha_{1}\beta_{1}}^{\rho_{1}} + [g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{l}[g_{x}^{*}]_{\alpha_{1}}^{\rho_{1}}[g_{u}^{*}]_{\beta_{1}}^{\rho_{2}} = [g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{l}[g_{x}^{*}]_{\alpha_{1}}^{\rho_{1}}[g_{u}^{*}]_{\beta_{1}}^{\rho_{2}}$$

$$[z_{xu}^{cond}]_{\alpha_1\beta_1} = \begin{bmatrix} 0 \\ [g_{xu}]_{\alpha_1\beta_1} \\ [G_{xu}]_{\alpha_1\beta_1} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ [G_{xu}]_{\alpha_1\beta_1} \\ 0 \end{bmatrix}$$

$$[F_{xu}^{cond}]_{\alpha_{1}\beta_{1}}^{i} = [f_{z}]_{\gamma_{1}}^{i}[z_{xu}^{cond}]_{\alpha_{1}\beta_{1}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i}[z_{x}]_{\alpha_{1}}^{\gamma_{1}}[z_{u}]_{\beta_{1}}^{\gamma_{2}} = [f_{y_{+}^{**}}]_{\rho_{1}^{+}}^{i}[g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{\rho_{1}^{+}}[g_{x}^{*}]_{\alpha_{1}}^{\rho_{1}}[g_{u}^{*}]_{\beta_{1}}^{\rho_{2}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i}[z_{x}]_{\alpha_{1}}^{\gamma_{1}}[z_{u}]_{\beta_{1}}^{\gamma_{2}}$$

Tensor Unfolding: $F_{xu}^{cond} = f_{y_+^{**}} g_{xx}^{**} \left(g_x^* \otimes g_u^* \right) + f_{zz} \left(z_x \otimes z_u \right)$

Second-order Approximation Recovering $g_{x\sigma}$

Recovering $g_{\chi\sigma}$

Tensors

$$\begin{split} \left[W_{xu_{+}}\right]_{\alpha_{1}\delta_{1}} &= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \left[w_{x\sigma}\right]_{\alpha_{1}} &= \begin{bmatrix} [g_{x\sigma}^{*}]_{\alpha_{1}} \\ 0 \\ 0 \end{bmatrix} \\ \left[G_{xu_{+}}\right]_{\alpha_{1}\delta_{1}}^{l} &= [g_{w}^{**}]_{\phi_{1}}^{l} \left[w_{xu_{+}}\right]_{\alpha_{1}\delta_{1}}^{\phi_{1}} + [g_{ww}^{**}]_{\phi_{1}\phi_{2}}^{l} \left[w_{x}\right]_{\alpha_{1}}^{\phi_{1}} \left[w_{u_{+}}\right]_{\delta_{1}}^{\phi_{2}} \\ &= [g_{xu}^{**}]_{\rho_{1}\psi_{1}}^{l} \left[g_{x}^{*}\right]_{\alpha_{1}}^{\rho_{1}} \left[I_{u}\right]_{\delta_{1}}^{\psi_{1}} \\ \left[G_{x\sigma}\right]_{\alpha_{1}}^{l} &= [g_{w}^{**}]_{\phi_{1}}^{l} \left[w_{x\sigma}\right]_{\alpha_{1}}^{\phi_{1}} + [g_{ww}^{**}]_{\phi_{1}\phi_{2}}^{l} \left[w_{x}\right]_{\alpha_{1}}^{\phi_{1}} \left[w_{\sigma}\right]^{\phi_{2}} \\ &= [g_{x}^{**}]_{\rho_{1}}^{l} \left[g_{x\sigma}^{*}\right]_{\alpha_{1}}^{\rho_{1}} + [g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{l} \left[g_{x}^{*}\right]_{\alpha_{1}}^{\rho_{2}} \left[g_{x}^{*}\right]_{\rho_{1}\phi_{2}}^{\rho_{2}} + [g_{xx}^{**}]_{\rho_{1}}^{l} \left[g_{x}^{*}\right]_{\alpha_{1}}^{\rho_{2}} \\ &= [g_{x}^{**}]_{\rho_{1}}^{l} \left[g_{x\sigma}^{*}\right]_{\alpha_{1}}^{\rho_{1}} + [g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{l} \left[g_{x}^{*}\right]_{\alpha_{1}}^{\rho_{2}} \left[g_{x}^{*}\right]_{\rho_{1}}^{\rho_{2}} + [g_{xx}^{**}]_{\rho_{1}}^{l} \left[g_{x}^{*}\right]_{\alpha_{1}}^{\rho_{2}} \\ &= [g_{xu_{+}}^{*}]_{\alpha_{1}\delta_{1}}^{l} = \left[g_{xu_{+}}^{*}\right]_{\alpha_{1}\delta_{1}}^{l} + [g_{xx}^{*}]_{\alpha_{1}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}}^{\rho_{2}} + [g_{xx}^{*}]_{\rho_{1}}^{l} \left[g_{x}^{*}\right]_{\rho_{1}}^{\rho_{2}} \\ &= [g_{xu_{+}}^{*}]_{\alpha_{1}\delta_{1}}^{l} = \left[g_{xu_{+}}^{*}\right]_{\alpha_{1}\delta_{1}}^{l} + [g_{xx}^{*}]_{\alpha_{1}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}}^{\rho_{2}} + [g_{xx}^{*}]_{\rho_{1}}^{l} \left[g_{x}^{*}\right]_{\rho_{1}}^{\rho_{2}} \\ &= [g_{xu_{+}}^{*}]_{\alpha_{1}\delta_{1}}^{l} = [g_{xu_{+}}^{*}]_{\alpha_{1}\delta_{1}}^{l} + [g_{xx}^{*}]_{\alpha_{1}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}}^{\rho_{2}} + [g_{xx}^{*}]_{\rho_{1}}^{l} \left[g_{x\sigma}^{*}\right]_{\alpha_{1}}^{\rho_{2}} \\ &= [g_{xu_{+}}^{*}]_{\alpha_{1}\delta_{1}}^{l} = [g_{xu_{+}}^{*}]_{\alpha_{1}\delta_{1}}^{l} + [g_{xx}^{*}]_{\alpha_{1}}^{\rho_{1}} \left[g_{x\sigma}^{*}\right]_{\alpha_{1}}^{\rho_{2}} \\ &= [g_{xu_{+}}^{*}]_{\alpha_{1}\delta_{1}}^{l} + [g_{xx}^{*}]_{\alpha_{1}\delta_{1}}^{l} + [g_{xx}^{*}]_{\alpha_{1}}^{l} \left[g_{x\sigma}^{*}\right]_{\alpha_{1}}^{\rho_{2}} \\ &= [g_{xu_{+}}^{*}]_{\alpha_{1}\delta_{1}}^{l} + [g_{xx}^{*}]_{\alpha_{1}\delta_{1}}^{l} + [g_{xx}^{*}]_{\alpha_{1}\delta_{1}^{l}} \\ &= [g_{xu_{+}}^{*}]_{\alpha_{1}\delta_{1}}^{l} + [g_{xx}^{*}]_{\alpha_{1}\delta_{1}^{l}} \\ &= [g_{xu_{+}}^{*}]_{\alpha_{1}\delta_{1}^{l} + [g_{xx}^{*}]$$

$$Matrix$$

$$w_{xu_{+}} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, w_{x\sigma} = \begin{pmatrix} g_{x\sigma}^{*} \\ 0 \\ 0 \end{pmatrix}$$

$$G_{xu_{+}} = g_{w}^{**}w_{xu_{+}} + g_{ww}^{**} \left(w_{x} \otimes w_{u_{+}} \right)$$

$$= g_{xu}^{**} \left(g_{x}^{*} \otimes I_{u} \right)$$

$$G_{x\sigma} = g_{w}^{**}w_{x\sigma} + g_{ww}^{**} \left(w_{x} \otimes w_{\sigma} \right)$$

$$= g_{x}^{**}g_{x\sigma}^{*} + g_{xx}^{**} \left(g_{x}^{*} \otimes g_{\sigma}^{*} \right) + g_{x\sigma}^{**}g_{x}^{*}$$

$$z_{xu_{+}} = \begin{pmatrix} 0 \\ 0 \\ G_{xu_{+}} \end{pmatrix}, z_{x\sigma} = \begin{pmatrix} 0 \\ g_{x\sigma} \\ G_{x\sigma} \\ 0 \end{pmatrix}$$

$$F_{xu_{+}} = f_{z}z_{xu_{+}} + f_{zz} \left(z_{x} \otimes z_{u_{+}} \right)$$

$$F_{x\sigma} = f_{z}z_{x\sigma} + f_{zz} \left(z_{x} \otimes z_{\sigma} \right)$$

Recovering $g_{x\sigma}$

$$[F_{x\sigma}]_{\alpha_{1}}^{i} + [F_{xu_{+}}]_{\alpha_{1}\delta_{1}}^{i} [\Sigma^{(1)}]^{\delta_{1}} = [f_{z}]_{\gamma_{1}}^{i} [z_{x\sigma}]_{\alpha_{1}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}} + [D_{101}]_{\alpha_{1}}^{i} = 0$$

$$=: [D_{101}]_{\alpha_{1}}^{i}$$

Tensor Unfolding yields the corresponding matrix representation:

$$F_{x\sigma} + F_{xu_{+}} \left(I_{x} \otimes \Sigma^{(1)} \right) = f_{z} z_{x\sigma} + f_{zz} \left(z_{x} \otimes z_{\sigma} \right) + D_{101} = 0$$

$$=: D_{101}$$

developing terms, we can simplify this using perturbation matrices A and B:

$$Ag_{x\sigma} + Bg_{x\sigma}g_x^* = -\left(f_{y_+^{**}}g_{xx}^{**}(g_x^* \otimes g_\sigma^*) + f_{zz}(z_x \otimes z_\sigma) + D_{101}\right)$$

Recovering $g_{\chi\sigma}$

$$Ag_{x\sigma} + Bg_{x\sigma}g_x^* = -\left(f_{y_+^{**}}g_{xx}^{**}(g_x^* \otimes g_\sigma^*) + f_{zz}(z_x \otimes z_\sigma) + D_{101}\right)$$

- this is a Generalized Sylvester Equation
- note that the right-hand side contains only objects that are already available from previously computed terms
 - but due to certainty equivalence: $g_{\sigma}^* = 0$, $z_{\sigma} = 0$
 - $D_{101} = 0$ because $\Sigma^{(1)} = 0$
- therefore: $g_{x\sigma} = 0$
- ▶ a second-order approximation does not imply a correction for uncertainty in terms which are linear in the state vector

Recovering $g_{\chi\sigma}$

$$Ag_{x\sigma} + Bg_{x\sigma}g_x^* = -\left(f_{y_+^{**}}g_{xx}^{**}(g_x^* \otimes g_\sigma^*) + f_{zz}(z_x \otimes z_\sigma) + D_{101}\right)$$

 $f_{y_+^**}g_{xx}^{**}(g_x^*\otimes g_\sigma^*) + f_{zz}\left(z_x\otimes z_\sigma\right) \text{ can be computed by evaluating } Faà di Bruno's formula for } [F_{x\sigma}]_{\alpha_1}^i \text{ and } [G_{x\sigma}]_{\alpha_1}^i \text{ conditional} \text{ on } [g_{x\sigma}]_{\alpha_1}^i = 0:$

$$[G_{x\sigma}^{cond}]_{\alpha_{1}}^{l} = [g_{x}^{**}]_{\rho_{1}}^{l} [g_{x\sigma}^{*}]_{\alpha_{1}}^{\rho_{1}} + [g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{l} [g_{x}^{*}]_{\alpha_{1}}^{\rho_{1}} [g_{\sigma}^{*}]^{\rho_{2}} + [g_{x\sigma}^{**}]_{\rho_{1}}^{l} [g_{x}^{*}]_{\alpha_{1}}^{\rho_{1}} = [g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{l} [g_{x}^{*}]_{\alpha_{1}}^{\rho_{1}} [g_{\sigma}^{*}]^{\rho_{2}}$$

$$\begin{bmatrix} z_{x\sigma}^{cond} \end{bmatrix}_{\alpha_1} = \begin{bmatrix} 0 \\ [g_{x\sigma}]_{\alpha_1} \\ [G_{x\sigma}]_{\alpha_1} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ [G_{x\sigma}]_{\alpha_1} \\ 0 \end{bmatrix}$$

$$[F_{x\sigma}^{cond}]_{\alpha_{1}}^{i} = [f_{z}]_{\gamma_{1}}^{i} [z_{x\sigma}^{cond}]_{\alpha_{1}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}} = [f_{y_{+}^{**}}]_{\rho_{1}^{+}}^{i} [g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{\rho_{1}^{+}} [g_{x}^{*}]_{\alpha_{1}}^{\rho_{1}} [g_{\sigma}^{*}]^{\rho_{2}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{x}]_{\alpha_{1}}^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}}$$

- ▶ Tensor Unfolding: $F_{x\sigma}^{cond} = f_{y_+^{**}} g_{xx}^{**} \left(g_x^* \otimes g_\sigma^* \right) + f_{zz} \left(z_x \otimes z_\sigma \right)$
- $D_{101} = F_{xu_+} \left(I_x \otimes \Sigma^{(1)} \right) \text{ can be computed by evaluating } Fa\grave{a} \text{ } di \text{ } Bruno's \text{ } formula \text{ } for \text{ } \left[F_{xu_+} \right]_{\alpha_1 \delta_1}^i \text{ } and \text{ } \left[G_{xu_+} \right]_{\alpha_1 \delta_1}^i \text{ } directly \text{ } as \text{ } all \text{ } terms \text{ } are \text{ } available$

Second-order Approximation Recovering $g_{u\sigma}$

Recovering 8uo

Tensors

$$\begin{split} \left[w_{uu_{+}}\right]_{\beta_{1}\delta_{1}} &= \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \left[w_{u\sigma}\right]_{\beta_{1}} &= \begin{bmatrix} g_{u\sigma}^{*}]_{\beta_{1}}\\0\\0 \end{bmatrix} \\ \left[G_{uu_{+}}\right]_{\beta_{1}\delta_{1}}^{l} &= \left[g_{w}^{***}\right]_{\phi_{1}}^{l} \left[w_{uu_{+}}\right]_{\beta_{1}\delta_{1}}^{\phi_{1}} + \left[g_{ww}^{***}\right]_{\phi_{1}\phi_{2}}^{l} \left[w_{u}\right]_{\beta_{1}}^{\phi_{1}} \left[w_{u_{+}}\right]_{\delta_{1}}^{\phi_{2}} \\ &= \left[g_{xu}^{***}\right]_{\rho_{1}\psi_{1}}^{l} \left[g_{u}^{*}\right]_{\beta_{1}}^{\rho_{1}} \left[I_{u}\right]_{\delta_{1}}^{\psi_{1}} \\ \left[G_{u\sigma}\right]_{\beta_{1}}^{l} &= \left[g_{w}^{***}\right]_{\phi_{1}}^{l} \left[w_{u\sigma}\right]_{\beta_{1}}^{\phi_{1}} + \left[g_{ww}^{***}\right]_{\phi_{1}\phi_{2}}^{l} \left[w_{u}\right]_{\beta_{1}}^{\phi_{1}} \left[w_{\sigma}\right]^{\phi_{2}} \\ &= \left[g_{x}^{***}\right]_{\rho_{1}}^{l} \left[g_{u\sigma}^{*}\right]_{\beta_{1}}^{\rho_{1}} + \left[g_{xx}^{***}\right]_{\rho_{1}\rho_{2}}^{l} \left[g_{u}^{*}\right]_{\beta_{1}}^{\rho_{2}} \left[g_{\sigma}^{*}\right]^{\rho_{2}} + \left[g_{x\sigma}^{***}\right]_{\rho_{1}}^{l} \left[g_{u}^{*}\right]_{\beta_{1}}^{\rho_{1}} \\ &= \left[g_{x}^{***}\right]_{\rho_{1}}^{l} \left[g_{u\sigma}^{*}\right]_{\beta_{1}}^{\rho_{1}} + \left[g_{xx}^{***}\right]_{\rho_{1}\rho_{2}}^{l} \left[g_{u}^{*}\right]_{\beta_{1}}^{\rho_{2}} \left[g_{\sigma}^{*}\right]^{\rho_{2}} + \left[g_{x\sigma}^{***}\right]_{\rho_{1}}^{l} \left[g_{u}^{*}\right]_{\beta_{1}}^{\rho_{1}} \\ &= \left[g_{uu_{+}}\right]_{\beta_{1}\delta_{1}}^{l} = \left[g_{u}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{1}} + \left[g_{x}^{*}\right]_{\gamma_{1}\gamma_{2}}^{l} \left[g_{u}^{*}\right]_{\beta_{1}}^{\gamma_{1}} \left[g_{u}^{*}\right]_{\beta_{1}}^{\gamma_{2}} \\ &= \left[g_{u\sigma}\right]_{\beta_{1}}^{\gamma_{1}} = \left[g_{u}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{1}} + \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{1}} + \left[g_{x}^{*}\right]_{\gamma_{1}\gamma_{2}}^{\gamma_{1}} \left[g_{u}^{*}\right]_{\beta_{1}}^{\gamma_{1}} \left[g_{u}^{*}\right]_{\beta_{1}}^{\gamma_{2}} \\ &= \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{1}} + \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{1}} + \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{2}} + \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{2}} \left[g_{u}^{*}\right]_{\beta_{1}}^{\gamma_{1}} \\ &= \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{1}} + \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{2}} + \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{2}} \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{2}} \\ &= \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{1}} + \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{1}} + \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{2}} + \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{2}} \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{2}} \\ &= \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{1}} + \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{1}} + \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{1}} + \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{2}} \left[g_{x}^{*}\right]_{\beta_{1}\delta_{1}}^{\gamma_{2}}$$

$$W_{uu_{+}} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, w_{u\sigma} = \begin{pmatrix} g_{u\sigma}^{*} \\ 0 \\ 0 \end{pmatrix}$$

$$G_{uu_{+}} = g_{w}^{**}w_{uu_{+}} + g_{ww}^{**}(w_{u} \otimes w_{u_{+}})$$

$$= g_{xu}^{**}(g_{u}^{*} \otimes I_{u})$$

$$G_{u\sigma} = g_{w}^{**}w_{u\sigma} + g_{ww}^{**}(w_{u} \otimes w_{\sigma})$$

$$= g_{x}^{**}g_{u\sigma}^{*} + g_{xx}^{**}(g_{u}^{*} \otimes g_{\sigma}^{*}) + g_{x\sigma}^{**}g_{u}^{*}$$

$$z_{uu_{+}} = \begin{pmatrix} 0 \\ 0 \\ G_{uu_{+}} \\ 0 \end{pmatrix}, z_{u\sigma} = \begin{pmatrix} 0 \\ g_{u\sigma} \\ G_{u\sigma} \\ 0 \end{pmatrix}$$

$$F_{uu_{+}} = f_{z}z_{uu_{+}} + f_{zz}(z_{u} \otimes z_{u_{+}})$$

$$F_{u\sigma} = f_{z}z_{u\sigma} + f_{zz}(z_{u} \otimes z_{\sigma})$$

Recovering 8uo

$$[F_{u\sigma}]_{\beta_{1}}^{i} + [F_{uu_{+}}]_{\beta_{1}\delta_{1}}^{i} [\Sigma^{(1)}]^{\delta_{1}} = [f_{z}]_{\gamma_{1}}^{i} [z_{u\sigma}]_{\beta_{1}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}} + [D_{011}]_{\beta_{1}}^{i} = 0$$

$$=: [D_{011}]_{\beta_{1}}^{i}$$

Tensor Unfolding yields the corresponding matrix representation:

$$F_{u\sigma} + F_{uu_{+}} \left(I_{u} \otimes \Sigma^{(1)} \right) = f_{z} z_{u\sigma} + f_{zz} \left(z_{u} \otimes z_{\sigma} \right) + D_{011} = 0$$

$$=: D_{011}$$

developing terms, we can simplify this using perturbation matrix A:

$$Ag_{u\sigma} = -\left(f_{y_{+}^{**}}\left(g_{xx}^{**}(g_{u}^{*} \otimes g_{\sigma}^{*}) + g_{x\sigma}^{**}g_{u}^{*}\right) + f_{zz}\left(z_{u} \otimes z_{\sigma}\right) + D_{011}\right)$$

Recovering 8uo

$$Ag_{u\sigma} = -\left(f_{y_{+}^{**}}\left(g_{xx}^{**}(g_{u}^{*} \otimes g_{\sigma}^{*}) + g_{x\sigma}^{**}g_{u}^{*}\right) + f_{zz}\left(z_{u} \otimes z_{\sigma}\right) + D_{011}\right)$$

- taking the inverse of A gives us $g_{u\sigma}$
- note that the right-hand side contains only objects that are already available from previously computed terms
- but due to certainty equivalence and $\Sigma^{(1)} = 0$ we get

$$g_{u\sigma} = 0$$

second-order approximation does not imply a correction for uncertainty in terms which are linear in the innovations vector

Recovering $g_{u\sigma}$

$$Ag_{u\sigma} = -\left(f_{y_{+}^{**}}\left(g_{xx}^{**}(g_{u}^{*} \otimes g_{\sigma}^{*}) + g_{x\sigma}^{**}g_{u}^{*}\right) + f_{zz}\left(z_{u} \otimes z_{\sigma}\right) + D_{011}\right)$$

• $f_{y_+^{**}}\left(g_{xx}^{**}(g_u^*\otimes g_\sigma^*)+g_{x\sigma}^{**}g_u^*\right)+\overline{f_{zz}}\left(z_u\otimes z_\sigma\right)$ can be computed by evaluating Faa di Bruno's formula for $[F_{u\sigma}]_{\beta_1}^i$ and $[G_{u\sigma}]_{\beta_1}^i$ conditional on $[g_{u\sigma}]_{\beta_1}^i=0$:

$$\left[G_{u\sigma}^{cond}\right]_{\beta_{1}}^{l} = \left[g_{x}^{**}\right]_{\rho_{1}}^{l} \left[g_{u\sigma}^{*}\right]_{\beta_{1}}^{\rho_{1}} + \left[g_{xx}^{**}\right]_{\rho_{1}\rho_{2}}^{l} \left[g_{u}^{*}\right]_{\beta_{1}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}}^{\rho_{2}} + \left[g_{x\sigma}^{**}\right]_{\rho_{1}}^{l} \left[g_{u}^{*}\right]_{\rho_{1}}^{\rho_{1}} = \left[g_{xx}^{**}\right]_{\rho_{1}\rho_{2}}^{l} \left[g_{u}^{*}\right]_{\beta_{1}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}}^{\rho_{1}} \left[g_{u}^{*}\right]_{\beta_{1}}^{\rho_{1}} + \left[g_{xx}^{**}\right]_{\rho_{1}\rho_{2}}^{l} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} + \left[g_{xx}^{**}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} + \left[g_{xx}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} + \left[g_{xx}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{1}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{2}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{2}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{2}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{2}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{2}} \left[g_{x}^{*}\right]_{\rho_{1}\rho_{2}}^{\rho_{2}} \left[g_{x}^{*}\right]_{\rho_{1$$

$$\begin{bmatrix} z_{u\sigma}^{cond} \end{bmatrix}_{\beta_1} = \begin{bmatrix} 0 \\ [g_{u\sigma}]_{\beta_1} \\ [G_{u\sigma}]_{\beta_1} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ [G_{u\sigma}]_{\beta_1} \\ 0 \end{bmatrix}$$

$$[F_{u\sigma}^{cond}]_{\beta_{1}}^{i} = [f_{z}]_{\gamma_{1}}^{i} [z_{u\sigma}^{cond}]_{\beta_{1}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}} = [f_{y_{+}^{**}}]_{\rho_{1}^{+}}^{i} \left([g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{\rho_{1}} [g_{u}^{*}]_{\beta_{1}}^{\rho_{1}} [g_{\sigma}^{*}]^{\rho_{2}} + [g_{x\sigma}^{**}]_{\rho_{1}}^{\rho_{1}} [g_{u}^{*}]_{\beta_{1}}^{\rho_{1}} \right) + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{u}]_{\beta_{1}}^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}}$$

- ► Tensor Unfolding: $F_{u\sigma}^{cond} = f_{y_+^{**}} \left(g_{xx}^{**} (g_u^* \otimes g_\sigma^*) + g_{x\sigma}^{**} g_u^* \right) + f_{zz} \left(z_u \otimes z_\sigma \right)$
- $D_{011} = F_{uu_+} \left(I_u \otimes \Sigma^{(1)} \right) \text{ can be computed by evaluating } Faà di Bruno's formula for } \left[F_{uu_+} \right]_{\beta_1 \delta_1}^i \text{ and } \left[G_{uu_+} \right]_{\beta_1 \delta_1}^l \text{ directly} \text{ as all terms are available}$

Second-order Approximation Recovering $g_{\sigma\sigma}$

Tensors

$$[w_{\sigma\sigma}] = \begin{bmatrix} g_{\sigma\sigma}^* \\ 0 \\ 0 \end{bmatrix}, [w_{u_{+}\sigma}]_{\delta_1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, [w_{u_{+}u_{+}}]_{\delta_1\delta_2} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$[G_{\sigma\sigma}]^{l} = [g_{w}^{**}]_{\phi_{1}}^{l} [w_{\sigma\sigma}]^{\phi_{1}} + [g_{ww}^{**}]_{\phi_{1}\phi_{2}}^{l} [w_{\sigma}]^{\phi_{1}} [w_{\sigma}]^{\phi_{2}}$$

$$= [g_x^{**}]_{\rho_1}^l [g_{\sigma\sigma}^*]^{\rho_1} + [g_{xx}^{**}]_{\rho_1\rho_2}^l [g_{\sigma}^*]^{\rho_1} [g_{\sigma}^*]^{\rho_2} + [g_{x\sigma}^{**}]_{\rho_1}^l [g_{\sigma}^*]^{\rho_1} + [g_{x\sigma}^{**}]_{\rho_1}^l [g_{\sigma}^*]^{\rho_1} + [g_{\sigma\sigma}^{**}]^l$$

$$[G_{u_{+}\sigma}]_{\delta_{1}}^{i} = [g_{w}^{**}]_{\phi_{1}}^{i} [w_{u_{+}\sigma}]_{\delta_{1}}^{\phi_{1}} + [g_{ww}^{**}]_{\phi_{1}\phi_{2}}^{i} [w_{u_{+}}]_{\delta_{1}}^{\phi_{1}} [w_{\sigma}]^{\phi_{2}}$$

$$= [g_{xu}^{**}]_{\rho_1\psi_1}^l [g_{\sigma}^*]^{\rho_1} [I_u]_{\delta_1}^{\psi_1} + [g_{u\sigma}^{**}]_{\psi_1}^l [I_u]_{\delta_1}^{\psi_1}$$

$$[G_{u_{+}u_{+}}]_{\delta_{1}\delta_{2}}^{l} = [g_{w}^{**}]_{\phi_{1}}^{l}[w_{u_{+}u_{+}}]_{\delta_{1}\delta_{2}}^{\phi_{1}} + [g_{ww}^{**}]_{\phi_{1}\phi_{2}}^{l}[w_{u_{+}}]_{\delta_{1}}^{\phi_{1}}[w_{u_{+}}]_{\delta_{2}}^{\phi_{2}}$$

$$= [g_{uu}^{**}]_{\psi_1\psi_2}^{\iota} [I_u]_{\delta_1}^{\psi_1} [I_u]_{\delta_2}^{\psi_2}$$

Matrix

$$w_{\sigma\sigma} = \begin{pmatrix} g_{\sigma\sigma}^* \\ 0 \\ 0 \end{pmatrix}, w_{u_+\sigma} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, w_{u_+u_+} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$G_{\sigma\sigma} = g_w^{**} w_{\sigma\sigma} + g_{ww}^{**} \left(w_{\sigma} \otimes w_{\sigma} \right)$$

$$= g_{x}^{**}g_{\sigma\sigma}^{*} + g_{xx}^{**} (g_{\sigma}^{*} \otimes g_{\sigma}^{*}) + g_{x\sigma}^{**}g_{\sigma}^{*} + g_{x\sigma}^{**}g_{\sigma}^{*} + g_{\sigma\sigma}^{**}$$

$$G_{u_{+}\sigma} = g_{w}^{**} w_{u_{+}\sigma} + g_{ww}^{**} \left(w_{u_{+}} \otimes w_{\sigma} \right)$$

$$= g_{xu}^{**} \left(g_{\sigma}^* \otimes I_u \right) + g_{u\sigma}^{**}$$

$$G_{u_{+}u_{+}} = g_{w}^{**}w_{u_{+}u_{+}} + g_{ww}^{**} \left(w_{u_{+}} \otimes w_{u_{+}} \right)$$

$$=g_{uu}^{**}\left(I_u\otimes I_u\right)$$

Tensors

$$[z_{\sigma\sigma}] = \begin{bmatrix} 0 \\ [g_{\sigma\sigma}] \\ [G_{\sigma\sigma}] \\ 0 \end{bmatrix}, [z_{u_{+}\sigma}]_{\delta_{1}} = \begin{bmatrix} 0 \\ 0 \\ [G_{u_{+}\sigma}]_{\delta_{1}} \end{bmatrix},$$
$$[z_{u_{+}u_{+}}]_{\delta_{1}\delta_{2}} = \begin{bmatrix} 0 \\ 0 \\ [G_{u_{+}u_{+}}] \\ \delta_{1}\delta_{2} \end{bmatrix}$$

$$[F_{\sigma\sigma}]^{i} = [f_{z}]_{\gamma_{1}}^{i} [z_{\sigma\sigma}]^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{\sigma}]^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}}$$

$$[F_{u_{+}\sigma}]_{\delta_{1}}^{i} = [f_{z}]_{\gamma_{1}}^{i} [z_{u_{+}\sigma}]_{\delta_{1}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{u_{+}}]_{\delta_{1}}^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}}$$

$$[F_{u_{+}u_{+}}]_{\delta_{1}\delta_{2}}^{i} = [f_{z}]_{\gamma_{1}}^{i}[z_{u_{+}u_{+}}]_{\delta_{1}\delta_{2}}^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i}[z_{u_{+}}]_{\delta_{1}}^{\gamma_{1}}[z_{u_{+}}]_{\delta_{2}}^{\gamma_{2}}$$

Matrix

$$z_{\sigma\sigma} = \begin{pmatrix} 0 \\ g_{\sigma\sigma} \\ G_{\sigma\sigma} \\ 0 \end{pmatrix}, z_{u_{+}\sigma} = \begin{pmatrix} 0 \\ 0 \\ G_{u_{+}\sigma} \\ 0 \end{pmatrix}, z_{u_{+}u_{+}} = \begin{pmatrix} 0 \\ 0 \\ G_{u_{+}u_{+}} \\ 0 \end{pmatrix}$$

$$F_{\sigma\sigma} = f_z z_{\sigma\sigma} + f_{zz} \left(z_{\sigma} \otimes z_{\sigma} \right)$$

$$F_{u_{+}\sigma} = f_z z_{u_{+}\sigma} + f_{zz} \left(z_{u_{+}} \otimes z_{\sigma} \right)$$

$$F_{u_{+}u_{+}} = f_{z}z_{u_{+}u_{+}} + f_{zz} \left(z_{u_{+}} \otimes z_{u_{+}} \right)$$

$$[F_{\sigma\sigma}]^{i} + [F_{u_{+}u_{+}}]^{i}_{\delta_{1}\delta_{2}}[\Sigma^{(2)}]^{\delta_{1}\delta_{2}} + 2[F_{u_{+}\sigma}]^{i}_{\delta_{1}}[\Sigma^{(1)}]^{\delta_{1}} = [f_{z}]^{i}_{\gamma_{1}}[z_{\sigma\sigma}]^{\gamma_{1}} + [f_{zz}]^{i}_{\gamma_{1}\gamma_{2}}[z_{\sigma}]^{\gamma_{1}}[z_{\sigma}]^{\gamma_{2}} + [D_{002}]^{i} + [E_{002}]^{i} = 0$$

$$[D_{002}]^{i}$$

Tensor Unfolding yields the corresponding matrix representation:

$$F_{\sigma\sigma} + F_{u_{+}u_{+}} \Sigma^{(2)} + 2F_{u_{+}\sigma} \Sigma^{(1)} = f_{z} z_{\sigma\sigma} + f_{zz} \left(z_{\sigma} \otimes z_{\sigma} \right) + D_{002} + E_{002} = 0$$

$$E_{002}$$

developing terms, we can simplify this using perturbation matrices A and B:

$$(A+B)g_{\sigma\sigma} = -\left(f_{y_{+}^{**}}\left(g_{xx}^{**}(g_{\sigma}^{*} \otimes g_{\sigma}^{*}) + 2g_{x\sigma}^{**}g_{\sigma}^{*}\right) + f_{zz}\left(z_{\sigma} \otimes z_{\sigma}\right) + D_{002} + E_{002}\right)$$

$$(A+B)g_{\sigma\sigma} = -\left(f_{y_{+}^{**}}\left(g_{xx}^{**}(g_{\sigma}^{*}\otimes g_{\sigma}^{*}) + 2g_{x\sigma}^{**}g_{\sigma}^{*}\right) + f_{zz}\left(z_{\sigma}\otimes z_{\sigma}\right) + D_{002} + E_{002}\right)$$

- note that the right-hand side contains only objects that are already available from previously computed terms
- due to certainty equivalence, $\Sigma^{(1)} = 0$, and previously computed terms this simplifies to

$$(A+B)g_{\sigma\sigma} = -\left(f_{y_{+}^{**}}g_{uu}^{**} + f_{y_{+}^{**}y_{+}^{**}}\left(g_{u}^{**} \otimes g_{u}^{**}\right)\right)\Sigma^{(2)}$$

- taking the inverse of (A + B) gives us $g_{\sigma\sigma}$
- as $g_{\sigma\sigma}$ is nonzero, a second-order approximation adds a level correction for uncertainty to the approximated decision rule of agents (this breaks with certainty equivalence!)

$$(A+B)g_{\sigma\sigma} = -\left(f_{y_{+}^{**}}\left(g_{xx}^{**}(g_{\sigma}^{*} \otimes g_{\sigma}^{*}) + 2g_{x\sigma}^{**}g_{\sigma}^{*}\right) + f_{zz}\left(z_{\sigma} \otimes z_{\sigma}\right) + D_{002} + E_{002}\right)$$

• $f_{y_+^*}$ $\left(g_{xx}^{**}(g_\sigma^* \otimes g_\sigma^*) + 2g_{x\sigma}^{**}g_\sigma^*\right) + f_{zz}\left(z_\sigma \otimes z_\sigma\right)$ can be computed by evaluating Faa di Bruno's formula for $[F_{\sigma\sigma}]^i$ and $[G_{\sigma\sigma}]^i$ conditional on $[g_{\sigma\sigma}]^i = 0$:

$$[G_{\sigma\sigma}^{cond}]^{l} = [g_{x}^{**}]_{\rho_{1}}^{l} [g_{\sigma\sigma}^{*}]^{\rho_{1}} + [g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{l} [g_{\sigma}^{*}]^{\rho_{1}} [g_{\sigma}^{*}]^{\rho_{2}} + 2[g_{x\sigma}^{**}]_{\rho_{1}}^{l} [g_{\sigma}^{*}]^{\rho_{1}} + [g_{\sigma\sigma}^{**}]^{l} = [g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{l} [g_{\sigma}^{*}]^{\rho_{1}} [g_{\sigma}^{*}]^{\rho_{2}} + 2[g_{x\sigma}^{**}]_{\rho_{1}}^{l} [g_{\sigma}^{*}]^{\rho_{1}} + [g_{\sigma\sigma}^{**}]^{l} = [g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{l} [g_{\sigma}^{*}]^{\rho_{1}} [g_{\sigma}^{*}]^{\rho_{1}} + 2[g_{x\sigma}^{**}]_{\rho_{1}\rho_{2}}^{l} [g_{\sigma}^{*}]^{\rho_{1}} + 2[g_{x\sigma}^{*}]_{\rho_{1}\rho_{2}}^{l} [g_{x\sigma}^{*}]^{\rho_{1}} + 2[$$

$$[z_{\sigma\sigma}^{cond}] = \begin{bmatrix} 0 \\ [g_{\sigma\sigma}] \\ [G_{\sigma\sigma}] \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ [G_{\sigma\sigma}^{cond}] \\ 0 \end{bmatrix}$$

$$[F_{\sigma\sigma}^{cond}]^{i} = [f_{z}]_{\gamma_{1}}^{i} [z_{\sigma\sigma}^{cond}]^{\gamma_{1}} + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{\sigma}]^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}} = [f_{y_{+}^{**}}]_{\rho_{1}^{+}}^{i} \left([g_{xx}^{**}]_{\rho_{1}\rho_{2}}^{l} [g_{\sigma}^{*}]^{\rho_{1}} [g_{\sigma}^{*}]^{\rho_{2}} + 2[g_{x\sigma}^{**}]_{\rho_{1}}^{l} [g_{\sigma}^{*}]^{\rho_{1}} \right) + [f_{zz}]_{\gamma_{1}\gamma_{2}}^{i} [z_{\sigma}]^{\gamma_{1}} [z_{\sigma}]^{\gamma_{2}}$$

- ► Tensor Unfolding: $F_{\sigma\sigma}^{cond} = f_{y_+^{**}} \left(g_{xx}^{**} (g_{\sigma}^* \otimes g_{\sigma}^*) + 2g_{x\sigma}^{**} g_{\sigma}^* \right) + f_{zz} \left(z_{\sigma} \otimes z_{\sigma} \right)$
- $D_{002} = F_{u_+ u_+} \Sigma^{(2)} \text{ and } E_{002} = 2F_{u_+ \sigma} \Sigma^{(1)} \text{ can be computed by evaluating } Fa\grave{a} \text{ di Bruno's formula for } [F_{uu_+}]^i_{\beta_1 \delta_1} \text{ and } [G_{uu_+}]^i_{\beta_1 \delta_1} \text{ directly} \text{ as all terms are available}$

Third-order Approximation

Third-order Approximation

Necessary and sufficient conditions to recover the third-order partial derivatives of g with respect to xxx, xxu, $xx\sigma$, $xu\sigma$, $xu\sigma$, $xu\sigma$, $x\sigma\sigma$, uuu, $uu\sigma$, $u\sigma\sigma$, and $u\sigma\sigma$:

$$[g_{xxx}]:0=[F_{xxx}]^i_{\alpha_1\alpha_2\alpha_3}$$

$$[g_{uuu}]: 0 = [F_{uuu}]^i_{\beta_1\beta_2\beta_3}$$

$$[g_{xuu}]: 0 = [F_{xuu}]^{i}_{\alpha_1\beta_1\beta_2}$$

$$[g_{xxu}]: 0 = [F_{xxu}]^i_{\alpha_1\alpha_2\beta_1}$$

$$[g_{xx\sigma}]: 0 = [F_{xx\sigma}]_{\alpha_1\alpha_2}^i + [F_{xxu}]_{\alpha_1\alpha_2\delta_1}^i [\Sigma^{(1)}]^{\delta_1}$$

$$[g_{xu\sigma}]: 0 = [F_{xu\sigma}]_{\alpha_1\beta_1}^i + [F_{xuu}]_{\alpha_1\beta_1\delta_1}^i [\Sigma^{(1)}]^{\delta_1}$$

$$[g_{x\sigma\sigma}]: 0 = [F_{x\sigma\sigma}]_{\alpha_1}^i + [F_{xu_+u_+}]_{\alpha_1\delta_1\delta_2}^i [\Sigma^{(2)}]^{\delta_1\delta_2} + 2[F_{xu_+\sigma}]_{\alpha_1\delta_1}^i [\Sigma^{(1)}]^{\delta_1}$$

$$[g_{uu\sigma}]: 0 = [F_{uu\sigma}]^i_{\beta_1\beta_2} + [F_{uuu}]^i_{\beta_1\beta_2\delta_1} [\Sigma^{(1)}]^{\delta_1}$$

$$[g_{u\sigma\sigma}]: 0 = [F_{u\sigma\sigma}]_{\beta_1}^i + [F_{uu_+u_+}]_{\beta_1\delta_1\delta_2}^i [\Sigma^{(2)}]^{\delta_1\delta_2} + 2[F_{uu_+\sigma}]_{\beta_1\delta_1}^i [\Sigma^{(1)}]^{\delta_1}$$

$$[g_{xx\sigma}]:0=[F_{xx\sigma}]_{\alpha_{1}\alpha_{2}}^{i}+[F_{xxu_{+}}]_{\alpha_{1}\alpha_{2}\delta_{1}}^{i}[\Sigma^{(1)}]^{\delta_{1}}\quad[g_{\sigma\sigma\sigma}]:0=[F_{\sigma\sigma\sigma}]^{i}+[F_{u_{+}u_{+}u_{+}}]_{\delta_{1}\delta_{2}\delta_{3}}^{i}[\Sigma^{(3)}]^{\delta_{1}\delta_{2}\delta_{3}}+3[F_{u_{+}u_{+}\sigma}]_{\delta_{1}\delta_{2}}^{i}[\Sigma^{(2)}]^{\delta_{1}\delta_{2}}+3[F_{u_{+}\sigma\sigma}]_{\delta_{1}}^{i}[\Sigma^{(1)}]^{\delta_{1}}$$

Third-order Approximation

$$Ag_{xxx} + Bg_{xxx} (g_x^* \otimes g_x^* \otimes g_x^*) = -F_{xxx}^{cond}$$

$$Ag_{uuu} = -F_{uuu}^{cond}$$

$$Ag_{xuu} = -F_{xuu}^{cond}$$

$$Ag_{xxu} = -F_{xuu}^{cond}$$

$$Ag_{xxu} = -F_{xuu}^{cond}$$

$$Ag_{xxu} = -F_{xuu}^{cond}$$

$$Ag_{xxu} = -F_{xuu}^{cond} - D_{102} - E_{102}$$

$$Ag_{xu\sigma} = -F_{xu\sigma}^{cond} - D_{111}$$

$$Ag_{x\sigma\sigma} + Bg_{x\sigma\sigma}g_x^* = -F_{x\sigma\sigma}^{cond} - D_{102} - E_{102}$$

$$Ag_{uu\sigma} = -F_{uu\sigma}^{cond} - D_{021}$$

$$(A + B)g_{\sigma\sigma\sigma} = -F_{\sigma\sigma\sigma}^{cond} - D_{003} - E_{003}$$

Third-order approximation

$$g_{xx\sigma} = 0$$
, $g_{uu\sigma} = 0$, $g_{xu\sigma} = 0$

no correction for uncertainty in terms which are quadratic in *x* and *u*

$$g_{x\sigma\sigma} \neq 0$$
, $g_{u\sigma\sigma} \neq 0$

correction for uncertainty in terms which are linear in *x* and *u*

$$g_{\sigma\sigma\sigma} \neq 0$$

correction only iff third moments $\Sigma^{(3)} \neq 0$ (not in Dynare)

k-order Approximation

k-order Approximation

$$0 = \left[F_{x^i}\right]_{\alpha_i}^i \text{ for } g_{x^i}$$

$$0 = \left[F_{x^i u^j} \right]_{\alpha_i \beta_j}^i \text{ for } g_{x^i u^j} \text{ and } j > 0$$

$$0 = \left[F_{x^i \sigma^j}\right]_{\alpha_i}^i + \left[D_{ij}\right] + \left[E_{ij}\right] \text{ for } g_{x^i \sigma^j}$$

$$0 = \left[F_{x^i u^j \sigma^k} \right]_{\alpha_i \beta_j}^i + \left[D_{ijk} \right] + \left[E_{ijk} \right] \text{ for } g_{x^i u^j \sigma^k}$$

$$0 = [F_{\sigma^i}]^i + [D_i] + [E_i] \text{ for } g_{\sigma^i}$$

$$[D_{ijk}]_{\alpha_i\beta_j} = [F_{x^iu^ju^k_+}]_{\alpha_i\beta_j\delta_k} [\Sigma^{(k)}]^{\delta_k}$$

$$[E_{ijk}]_{\alpha_i\beta_j} = \sum_{m=1}^{k-1} {k \choose m} [F_{x^i u^j u^m_+ \sigma^{k-m}}]_{\alpha_i\beta_j \delta_m} [\Sigma^{(m)}]^{\delta_m}$$

Order of Computation

```
recover g_{x^k}
for j=1:1:(k-1)
       for i=(j-1):-1:1
          recover g_{x^{k-j}u^i\sigma^{j-i}}
      end
       recover g_{x^{k-j}\sigma^j}
end
for i=(k-1):-1:1
       recover g_{u^i\sigma^{k-i}}
end
recover g_{\sigma^k}
```

Computational Remarks (as of Dynare 5.1)

- order=2, we use unfolded matrix equations and optimized mex code
- order>2, we use multi-threaded and multidimensional tensor library implemented in C++
 - allows for folded/unfolded, dense/sparse tensor representations
 - implements Faà di Bruno's formula very efficiently
 - updates conditional Faa Di Bruno's formulas efficiently
- might change in future version to make use of more optimized code and/or Fortran re-implementation