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1. Exact expressions for pruned state-space representation

This is based on the technical appendix of |Andreasen et al.| (2014).

First we derive some additional expressions:
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1.1. State-space system of first-order approzimation

In a first-order approximation the system dynamics are captured by equations and (4)), we are
therefore already working in a linear state-space system. That is, define z; := :%{7 Yt = Tp +Y, &1 1= U4,
c:=0,d:=0, A:=hy, B:=hy, C:=g, and D := g,, then the equations can be rewritten as

21 = ¢+ Az + B
Yer1 =Y +d+ Cz + D€y

Note that if u; is Gaussian, &; is clearly Gaussian as well.



1.2. State-space system of second-order approrimation and pruning

In a second-order approximation the system dynamics are captured by equations , , , and
(7). To set up the pruned state-space system we define
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The system can thus be rewritten as a linear state-space representation

zi41 = ¢+ Azp + B4
Y1 =y +d+ Cz + D&

Note that even if u; is Gaussian, & is clearly non-Gaussian.

1.3. State-space system of third-order approximation and pruning

In a third-order approximation the system dynamics are captured by equations , , , , ,@,
@, and @[) To set up the pruned state-space system we define
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The system can thus be rewritten as a linear state-space representation

zt41 = ¢+ Azg + B
Yey1 =Y +d+ Cz + D1

Note that even if u; is Gaussian, &; is clearly non-Gaussian, since it’s higher-order cumulants are nonzero.

2. Computation of product moments for extended innovations

2.1. First-order approximation

Given a first-order approximation, the innovations are defined as the ng x 1 vector {41 = us41 with
ng = n, elements. We are interested in product moments My ¢ := E(& ® &), Mse = E(§ @ & ® &)
and My¢ = E(§& ® & ® & @ &) with ng, n? and n‘g elements, respectively. These, however, contain many

duplicate elements. Denote with My, ¢ the unique elements of My ¢, we have the following relationships:
Ms¢=DP,, - Mg, Mze=TPF, -Mse, Mye=QP, Mg,

with the duplication matrix DP,, defined by Magnus & Neudecker| (1999), and the triplication matrix
TP, and quadruplication matrix QP,, similarly defined by |Meijer| (2005). Note that these matrices are

independent of 6 and their Moore-Penrose-Inverse always exists, e.g. (QP,’l5 QPnE)_lQPT’LE My = M475.

Further, DP,,, TP,, and QP,, are constructed such that there is a unique ordering in My ¢, see Meijer
(2005) for an example and more details.

To compute the product-moments of & symbolically we therefore use the following procedure in Matlab
given the number of shocks n, and the order of product moments k=2,3.4.

1. Define w1 = (Wg1,1, - .- Ut+1,n, )" and Xy = [81Gi5]nuxny symbolically with ¢, 7 =1,...n,.

2. Get all integer permutations of [iy, i, ...%,,] that sum up to k, with 4; = 1,...,k and j = 1,...,ne.
Sort them in the ordering of Meijer| (2005)).

3. For each permutation [i1, g, ... ing] evaluate symbolically

E [(gl,t)il (&) (fns’t)i"s]

and store it in the vector Mk{.



The expressions we get in step 3 contain terms of the form

const. - Bl(u1,p11)™1 - (uz,e41)"2 - .+ (U 041) "m0 ],

that is joint product moments of the elements of u;41. Given a function that evaluates the moment structure
of uy41 either analytically or numerically, we are able to calculate these terms individually and save them
into script files. Note, that these computations need only to be done once for a model, after that we simply
evaluate the script files numerically given model parameters 8. Our code can evaluate product moments
from the Gaussian as well as Student-t distribution.

Normal distribution. In the case that u; is normally distributed, the joint product moments are functions
of the variances and covariances in ¥ and can be computed analytically. To this end, we use the very
efficient method and Matlab function of [Kanl (2008) to derive these joint product moments symbolically.
The cumulants can then be computed as outlined in the paper.

Student’s t distribution. In the case that u; is Student-t distributed with v degrees of freedom, we rewrite
uy in terms of a Inverse-Gamma distributed variable W = v~%? ~ IGAM (v/2,v/2), and a normally
distributed variable £, ~ N(0,%), uy = v~/2¢, (similar to Kotz & Nadarajah (2004) or Roth|(2013)). Since
W and ¢; are independent, we have E(usu;) = E(W)E(gie;) = %5%. Whereas all odd product moments

azn

of u; are zero, the even product moments (n = 37", iy, is an even number) are given by

Bl(urg)" - (uz)'™2 -+ (un, o) o] = BIWE] El(e1,0)"™ - (e2,)™2 -+ (en,.0) ],

The first term is equal to E[W*] = WQQ:/M and since ¢; is multivariate normal, we can use [Kan

(2008)’s procedure and Matlab function for the second product. The cumulants can then be computed as
outlined in the paper.

2.2. Second-order approrimation

Given a second-order approximation, the innovations are defined as the ne x 1 vector
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with ng = n, + n2 + 2n,n, elements. We are interested in product moments My¢ = E(& ® &), Mg ¢ ==
E(&®&®&) and My ¢ = E(§ 0608 ®&;) with ng, ng and n‘g elements, respectively. In order to compute
these objects efliciently, we first reduce the dimension of &, since it has some duplicate elements. That is,
we compute product-moments for the ng = Ny + Ny (ny +1)/2 + nyn, vector

/
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with DP, being the Moore-Penrose-Inverse of the duplication matrix DP,, and Ky, ,, the commutation
matrix such that K, . (2] ® up1) = (w41 ® 7). Then we have
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denoting the k-th (k=2,3,4)-order product moment of &. Since [® ;“ 1Fe¢] does not change with 6, we can

focus on M, M z, however, contains also many duplicate elements. Denote with M the unique elements
of M, & we have the following relationships:

MZE:DP M257 M37§~:TP M3§, 4£—Q M, ¢,

with the duplication matrix DPn~ defined by Magnus & Neudecker| (1999), and the triplication matrix
TPn and quadruplication matrix QPn similarly defined by Meijer| (2005]) [| Note that these matrices are
1ndependent of # and their Moore-Penrose-Inverse always exists, e.g. (QP,’%_QPH )~ 1QP’ M, ¢ = =M 1E

Further, DPng, TPn5 and QPng are constructed such that there is a unique ordering in Mk é see Meijer

(2005) for an example and more details.
To compute the product-moments of & symbolically we therefore use the following procedure in Matlab
given the number of shocks n,, the number of state variables n, and the order of product moments k=2,3,4.

1. Define w11 = (W11, - Witing) s xtf = (x{l,x{nx)’ and X, = [s1gi;]nuxnu symbolically with
1,7 =1,...m4. Set up
& = (uj, DP;f (ury1 @ upyr —vee(R)), (2] @ urp1)')'.

2. Get all integer permutations of [iy, ig, .. Z"E] that sum up to k, with i; =1,... .,k and j = 1,... ng.
Sort them in the ordering of |Meijer| (2005)).
3. For each permutation [iq, g, ... iné] evaluate symbolically

E [(gl,t)il (Eap) - (én@t)i"é]

and store it in the vector Mkf.
4. Optionally: Use Matlab’s unique function to further reduce the dimension of Mj, ¢.

The expressions we get in step 3 contain terms of the form

const. - Bl(u1,e41)™ + (uz,501)™2 o+ (Uny pg1) ™ mu ] - E[(fft)l” : (xgt)l”’ e (‘Tﬁzt)zZT]a
that is joint product moments of the elements of u;11 and :z:t (keeping in mlnd that :z:t and wugy1 are
independent due to the temporal independence of u;). For instance, for n, = = 1 the third-order
product moment of & is equal to

u? ut — Uiuz '
udz oty —202u3 +ub
Mgé =vec | & rut — 0'35(}’&2 u3z?
—0% +30tu? — 302ut + uS  wolu — 2x02ud + zud
ul 2 a2u2x2 udzd

where we dropped sub- and superscripts and E(u?) = o2.

structure of x{ and wsy; either analytically or numerically, we are able to calculate these terms individually
and save them into script files. Note, that these computations need only to be done once for a model,
after that we simply evaluate the script files numerically given model parameters 6. Our code can evaluate
product moments from the Gaussian as well as Student-t distribution.

Given a function that evaluates the moment

T Actually M £ has some further duplicate terms for n,,n; > 1 due to higher-order cross terms of u;+1 and x{, which we
can further reduce using indices from the unique function of Matlab.
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Normal distribution. In the case that u; is normally distributed, xf is also Gaussian with covariance matrix

Y.z. Therefore,
Ut+1 0 b)) 0
()~ (6)-G =)

is multivariate normal. All joint product moments are therefore functions of the variances and covariances
in ¥ and ¥, and can be computed analytically. To this end, we use the very efficient method and Matlab
function of [Kan| (2008)) to derive these joint product moments symbolically. For our example with n, =
n, = 1 and Gaussian u;, we get the unique entries

MQ{ = [012” 0, 0, 20’37 0, 0303]/
Mg = [0, 204, 0, 0, 0, 0, 855, 0, 20402, 0]

u-’x

M&f = [303, 0, 0, 1005, 0, 30502, 0, 0, 0, 0, 6005, 0, 100502, 0, 9030‘;}/

u-xr u-x

where E(az:{c 2) = 02. The cumulants can then be computed as outlined in the paper. Since the third-
order cumulant of a Gaussian process must be zero, we now see, that & is clearly non-Gaussian, since its
third-order cumulant is different from zero, even if the underlying distribution for u; is Gaussian.

Student’s t distribution. In the case that u; is Student-t distributed with v degrees of freedom, we rewrite
uy in terms of a Inverse-Gamma distributed variable W = v=Y/2 ~ IGAM (v/2,v/2), and a normally
distributed variable e; ~ N(0,%), u; = v~1/2¢; (similar to Kotz & Nadarajah| (2004) or Roth/(2013)). Since
W and ¢; are independent, we have E(usu;) = E(W)E(gse}) = 5%, Whereas all odd product moments

Uz

j=1
Bl(u )™ - (uzg)™ + - (tn, 1) "] = E[W

of u; are zero, the even product moments (n = ) °“, iy, is an even number) are given by

n

z]- E[(51,t)iu1 . (5270“2 .. (5nu,t)i”"u},

k
The first term is equal to E[W*] = % and since ¢; is multivariate normal, we can use Kan

(2008)’s procedure and Matlab function for the second product. Similar arguments apply to the product
moments of x{ , for instance the variance is given by
vee(S,) = Elaf @ af] = BIW] (L2 — he @ hy) H(hu @ hy) - Eley ® &4
~——

—_————
-5 vec(X)

v—

Thus, odd product moments are also zero, whereas even product moments can also be computed symbolically
by Kan| (2008)’s procedure and Matlab function, however, adjusted for E[W"/2]. The cumulants can then
be computed as outlined in the paper.

2.3. Third-order approximation
Given a third-order approximation, the innovations are defined as the ng x 1 vector

Ut4+1
U1 @ U1 — Doy
& @ ups
U1 @ i,{
7 ® up
U1 @ Tf
§t41 = 3:5:; ®i"{ ®Ut—f}
Ty @ U1 @ Ty
U1 @ & @ &
i{ ® Ut+1 ® Ut 41
U1 @ i‘{ @ Ut41
U1 U1 @ ff{
Upr1 @ Upg1 @ U1 — 34
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with ng = ny + ni + 2NN, + 2NN, + 3ninu + 3nwni + n% elements. We are interested in product moments
Mye =FE( ®¢&), Mg :=E(§ Q& ®&) and Mye := E(§ @& @& @ &) with ng, ng and ng elements,
respectively. In order to compute these objects efficiently, we first reduce the dimension of &, since it has
some duplicate elements. That is, we compute product-moments for the ng =ny+ Ny (ny +1)/2 4+ 2n,n,, +

n2n, + ngn? + ny(ny + 1) (ny, + 2) /6 vector

Ut+1
DP;F (w1 @ upy1 — Tay)
Ty @ Ut
Eiy1 = 27 @ Uy
# @] ®@up
i{ Q Upp1 @ Up1
TP (utp1 ® upy1 @ upyr — Lay)

u

given that
(1, 0 0 0 0 0 0 ]
0 DP, 0 0 0 0 0
0 0 Iy 0 0 0 0
0 0 Ku O 0 0 0
0 0 0 I 0 0 0
0 0 0 Ky 0 0 0
Fe=|0 0 0 0 DP, ® I, 0 0
0 0 0 0 (o ® Kug)(DPy ® 1,) 0 0
0 0 0 0 (Kuz®I)I; Q@ Kyz)(DP, ® 1) 0 0
0 0 0 0 0 (I, ® DP,) 0
0 0 0 0 0 (Kye @ I,)(I, ® DP,) 0
0 0 0 0 0 (I, ® Kuo)(Kyp ® I,)(I, ® DP,) 0
o 0 0 0 0 0 TP,
since
ft = F& : ft

and with DP;C ~ being the Moore-Penrose-Inverse of the duplication matrix DFP, , TP;: _ being the Moore-
Penrose-Inverse of the triplication matrix T'P,, and K, ,, the commutation matrix such that K, ., (a?tf ®
Up1) = (g1 ® ). Then we have
k
My == [@F_1Fe] - My ¢

denoting the k-th (k=2,3,4)-order product moment of &. Since [®§:1F5] does not change with 6, we can

focuson M, ;. M, & however, contains also many duplicate elements. Denote with M, é the unique elements
of M, § we have the following relationships:

M, ¢ = DPnE. Myg M= TPné My, M= QPng. My g,

with the duplication matrix DPn£~ defined by Magnus & Neudecker| (1999)), and the triplication matrix
TP, and quadruplication matrix QPnE. similarly defined by Meijer (2005)E| Note that these matrices are

2 Actually M Iy has some further duplicate terms for n,,n; > 1 due to higher-order cross terms of u;+1 and a:{ , which we
can further reduce using indices from the unique function of Matlab.
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independent of # and their Moore-Penrose-Inverse always exists, e.g. (QP/I&_QPng.)_lQP’ : M, = ~4 £

Further, DPng., TPns. and QP, . are constructed such that there is a unique ordering in M, k& see Meijer
(2005) for an example and more details.

The product-moments of & can thus be computed symbolically as outlined in the second-order approxi-
mation.
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