Higher-order statistics for DSGE models
 ONLINE APPENDIX
 NOT FOR PUBLICATION

Contents

1 Exact expressions for pruned state-space representation 2
1.1 State-space system of first-order approximation 2
1.2 State-space system of second-order approximation and pruning 3
1.3 State-space system of third-order approximation and pruning 3
2 Computation of product moments for extended innovations 4
2.1 First-order approximation 4
2.2 Second-order approximation 5
2.3 Third-order approximation 7

1. Exact expressions for pruned state-space representation

This is based on the technical appendix of Andreasen et al. (2014).
First we derive some additional expressions:

$$
\begin{align*}
\hat{y}_{t+1}^{f}= & g_{x} \hat{x}_{t}^{f}+g_{u} u_{t+1} \tag{1}\\
\hat{y}_{t+1}^{s}= & g_{x} \hat{x}_{t}^{s}+\frac{1}{2}\left[G_{x x}\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f}\right)+2 G_{x u}\left(\hat{x}_{t}^{f} \otimes u_{t+1}\right)+G_{u u}\left(u_{t+1} \otimes u_{t+1}\right)+g_{\sigma \sigma} \sigma^{2}\right] \tag{2}\\
\hat{y}_{t+1}^{r d}= & g_{x} \hat{x}_{t}^{r d}+G_{x x}\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{s}\right)+G_{x u}\left(\hat{x}_{t}^{s} \otimes u_{t+1}\right)+\frac{3}{6} G_{x \sigma \sigma} \hat{x}_{t}^{f}+\frac{3}{6} G_{u \sigma \sigma} u_{t+1} \\
& +\frac{1}{6} G_{x x x}\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f}\right)+\frac{1}{6} G_{u u u}\left(u_{t+1} \otimes u_{t+1} \otimes u_{t+1}\right) \tag{3}\\
& +\frac{3}{6} G_{x x u}\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \otimes u_{t+1}\right)+\frac{3}{6} G_{x u u}\left(\hat{x}_{t}^{f} \otimes u_{t+1} \otimes u_{t+1}\right) \\
\hat{x}_{t+1}^{f}= & h_{x} \hat{x}_{t}^{f}+h_{u} u_{t+1} \tag{4}\\
\hat{x}_{t+1}^{s}= & h_{x} \hat{x}_{t}^{s}+\frac{1}{2}\left[H_{x x}\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f}\right)+2 H_{x u}\left(\hat{x}_{t}^{f} \otimes u_{t+1}\right)+H_{u u}\left(u_{t+1} \otimes u_{t+1}\right)+h_{\sigma \sigma} \sigma^{2}\right] \tag{5}\\
\hat{x}_{t+1}^{r d}= & h_{x} \hat{x}_{t}^{r d}+H_{x x}\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{s}\right)+H_{x u}\left(\hat{x}_{t}^{s} \otimes u_{t+1}\right)+\frac{3}{6} H_{x \sigma \sigma} \hat{x}_{t}^{f}+\frac{3}{6} H_{u \sigma \sigma} u_{t+1} \\
& +\frac{1}{6} H_{x x x}\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f}\right)+\frac{1}{6} H_{u u u}\left(u_{t+1} \otimes u_{t+1} \otimes u_{t+1}\right) \tag{6}\\
& +\frac{3}{6} H_{x x u}\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \otimes u_{t+1}\right)+\frac{3}{6} H_{x u u}\left(\hat{x}_{t}^{f} \otimes u_{t+1} \otimes u_{t+1}\right) \\
\left(\hat{x}_{t+1}^{f} \otimes \hat{x}_{t+1}^{f}\right)= & \left(h_{x} \otimes h_{x}\right)\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f}\right)+\left(h_{u} \otimes h_{u}\right)\left(u_{t+1} \otimes u_{t+1}-\Gamma_{2 u}+\Gamma_{2 u}\right) \tag{7}\\
& +\left(h_{x} \otimes h_{u}\right)\left(\hat{x}_{t}^{f} \otimes u_{t+1}\right)+\left(h_{u} \otimes h_{x}\right)\left(u_{t+1} \otimes \hat{x}_{t}^{f}\right) \\
\left(\hat{x}_{t+1}^{f} \otimes \hat{x}_{t+1}^{s}\right)= & \left(h_{x} \otimes \frac{\sigma^{2}}{2} h_{\sigma \sigma}\right) \hat{x}_{t}^{f}+\left(h_{u} \otimes \frac{\sigma^{2}}{2} h_{\sigma \sigma}\right) u_{t+1} \\
& +\left(h_{x} \otimes h_{x}\right)\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{s}\right)+\left(h_{u} \otimes h_{x}\right)\left(u_{t+1} \otimes \hat{x}_{t}^{s}\right) \\
& +\left(h_{x} \otimes \frac{1}{2} H_{x x}\right)\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f}\right)+\left(h_{u} \otimes \frac{1}{2} H_{u u}\right)\left(u_{t+1} \otimes u_{t+1} \otimes u_{t+1}-\Gamma_{3 u}+\Gamma_{3 u}\right) \tag{8}\\
& +\left(h_{x} \otimes \frac{1}{2} H_{u u}\right)\left(\hat{x}_{t}^{f} \otimes u_{t+1} \otimes u_{t+1}\right)+\left(h_{u} \otimes \frac{1}{2} H_{x u}\right)\left(u_{t+1} \otimes \hat{x}_{t}^{f} \otimes u_{t+1}\right) \\
& +\left(h_{x} \otimes H_{x u}\right)\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \otimes u_{t+1}\right)+\left(h_{u} \otimes H_{x x}\right)\left(u_{t+1} \otimes \hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f}\right) \\
\left(\hat{x}_{t+1}^{f} \otimes \hat{x}_{t+1}^{f} \otimes \hat{x}_{t+1}^{f}\right)= & \left(h_{x} \otimes h_{x} \otimes h_{x}\right)\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f}\right)+\left(h_{x} \otimes h u \otimes h_{u}\right)\left(\hat{x}_{t}^{f} \otimes u_{t+1} \otimes u_{t+1}\right) \\
& +\left(h_{x} \otimes h_{x} \otimes h_{u}\right)\left(\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \otimes u_{t+1}\right)+\left(h_{x} \otimes h_{u} \otimes h_{x}\right)\left(\hat{x}_{t}^{f} \otimes u_{t+1} \otimes \hat{x}_{t}^{f}\right) \\
& +\left(h_{u} \otimes h_{x} \otimes h_{x}\right)\left(u_{t+1} \otimes \hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f}\right)+\left(h_{u} \otimes h_{u} \otimes h_{u}\right)\left(u_{t+1} \otimes u_{t+1} \otimes u_{t+1}-\Gamma_{3 u}+\Gamma_{3 u}\right) \tag{9}\\
& +\left(h_{u} \otimes h_{x} \otimes h_{u}\right)\left(u_{t+1} \otimes \hat{x}_{t}^{f} \otimes u_{t+1}\right)+\left(h_{u} \otimes h_{u} \otimes h_{x}\right)\left(u_{t+1} \otimes u_{t+1} \otimes \hat{x}_{t}^{f}\right)
\end{align*}
$$

1.1. State-space system of first-order approximation

In a first-order approximation the system dynamics are captured by equations (1) and (4), we are therefore already working in a linear state-space system. That is, define $z_{t}:=\hat{x}_{t}^{f}, y_{t}:=\hat{y}_{t}^{f}+\bar{y}, \xi_{t+1}:=u_{t+1}$, $c:=0, d:=0, A:=h_{x}, B:=h_{u}, C:=g_{x}$ and $D:=g_{u}$, then the equations can be rewritten as

$$
\begin{aligned}
& z_{t+1}=c+A z_{t}+B \xi_{t+1} \\
& y_{t+1}=\bar{y}+d+C z_{t}+D \xi_{t+1}
\end{aligned}
$$

Note that if u_{t} is Gaussian, ξ_{t} is clearly Gaussian as well.

1.2. State-space system of second-order approximation and pruning

In a second-order approximation the system dynamics are captured by equations (1), (22, (4), (5) and (7). To set up the pruned state-space system we define

$$
y_{t}=\hat{y}_{t}^{f}+\hat{y}_{t}^{s}+\bar{y}, \quad z_{t}:=\left(\begin{array}{c}
\hat{x}_{t}^{f} \\
\hat{x}_{t}^{s} \\
\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f}
\end{array}\right), \quad \xi_{t+1}:=\left(\begin{array}{c}
u_{t+1} \\
u_{t+1} \otimes u_{t+1}-\Gamma_{2 u} \\
\hat{x}_{t}^{f} \otimes u_{t+1} \\
u_{t+1} \otimes \hat{x}_{t}^{f}
\end{array}\right)
$$

and

$$
\left.\begin{array}{rlrl}
A & :=\left(\begin{array}{ccc}
h_{x} & 0 & 0 \\
0 & h_{x} & \frac{1}{2} H_{x x} \\
0 & 0 & h_{x} \otimes h_{x}
\end{array}\right), & B & :=\left(\begin{array}{cccc}
h_{u} & 0 & 0 & 0 \\
0 & \frac{1}{2} H_{u u} & H_{x u} & 0 \\
0 & h_{u} \otimes h_{u} & h_{x} \otimes h_{u} & h_{u} \otimes h_{x}
\end{array}\right), \\
C & :=\left(\begin{array}{lll}
g_{x} & g_{x} & \left.\frac{1}{2} G_{x x}\right)
\end{array}\right. & D:=\left(\begin{array}{lll}
g_{u} & \frac{1}{2} G_{u u} & G_{x u}
\end{array}\right)
\end{array}\right)
$$

The system can thus be rewritten as a linear state-space representation

$$
\begin{aligned}
& z_{t+1}=c+A z_{t}+B \xi_{t+1} \\
& y_{t+1}=\bar{y}+d+C z_{t}+D \xi_{t+1}
\end{aligned}
$$

Note that even if u_{t} is Gaussian, ξ_{t} is clearly non-Gaussian.

1.3. State-space system of third-order approximation and pruning

In a third-order approximation the system dynamics are captured by equations (11), (2), (3), (4), (5), (6), (7), (8) and (9). To set up the pruned state-space system we define

$$
y_{t}=\hat{y}_{t}^{f}+\hat{y}_{t}^{s}+\hat{y}_{t}^{r d}+\bar{y}, \quad z_{t}:=\left(\begin{array}{c}
u_{t+1} \\
\hat{x}_{t}^{f} \\
\hat{x}_{t}^{s} \\
\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \\
\hat{x}_{t}^{r d} \\
\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{s} \\
\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \otimes x_{t}^{f}
\end{array}\right),\left(\begin{array}{c}
u_{t+1}-\Gamma_{2 u} \\
\hat{x}_{t}^{f} \otimes u_{t+1} \\
u_{t+1} \otimes \hat{x}_{t}^{f} \\
\hat{x}_{t}^{s} \otimes u_{t+1} \\
u_{t+1} \otimes \hat{x}_{t}^{s} \\
\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \otimes u_{t+1} \\
\hat{x}_{t}^{f} \otimes u_{t+1} \otimes \hat{x}_{t}^{f} \\
u_{t+1} \otimes \hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \\
\hat{x}_{t}^{f} \otimes u_{t+1} \otimes u_{t+1} \\
u_{t+1} \otimes \hat{x}_{t}^{f} \otimes u_{t+1} \\
u_{t+1} \otimes u_{t+1} \otimes \hat{x}_{t}^{f} \\
u_{t+1} \otimes u_{t+1} \otimes u_{t+1}-\Gamma_{3, u}
\end{array}\right)
$$

and

$$
A:=\left(\begin{array}{cccccc}
h_{x} & 0 & 0 & 0 & 0 & 0 \\
0 & h_{x} & \frac{1}{2} H_{x x} & 0 & 0 & 0 \\
0 & 0 & h_{x} \otimes h_{x} & 0 & 0 & 0 \\
\frac{3}{6} H_{x \sigma \sigma} \sigma^{2} & 0 & 0 & h_{x} & H_{x x} & \frac{1}{6} H_{x x x} \\
h_{x} \otimes \frac{1}{2} h_{\sigma \sigma} \sigma^{2} & 0 & 0 & 0 & h_{x} \otimes h_{x} & \left.h_{x} \otimes \frac{1}{2} H_{x x}\right) \\
0 & 0 & 0 & 0 & 0 & \left.\left.h_{x} \otimes h_{x} \otimes h_{x}\right)\right] ;
\end{array}\right)
$$

$$
\begin{aligned}
& B:=\left(\begin{array}{ccccccccccc}
h_{u} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} H_{u u} & H_{x u} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & h_{u} \otimes h_{u} & h_{x} \otimes h_{u} & h_{u} \otimes h_{x} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{3}{6} H_{u \sigma \sigma} \sigma^{2} & 0 & 0 & 0 & H_{x u} & 0 & \frac{3}{6} H_{x x u} & 0 & 0 & 0 & 0 \\
h_{u} \otimes \frac{1}{2} h_{\sigma \sigma} \sigma^{2} & 0 & 0 & 0 & 0 & h_{u} \otimes h_{x} & h_{x} \otimes H_{x u} & 0 & h_{u} \otimes \frac{1}{2} H_{x x} & \frac{3}{6} H_{x} \otimes \frac{1}{2} H_{u u} & h_{u} \otimes H_{x u} \\
0 & 0 & 0 & 0 & 0 & 0 & h_{x} \otimes h_{x} \otimes h_{u} h_{x} \otimes h_{u} \otimes h_{x} h u \otimes h_{x} \otimes h_{x} h_{x} \otimes h_{u} \otimes h_{u} h_{u} \otimes h_{x} \otimes h_{u} h_{u} \otimes h_{u} \otimes h_{x} h_{u} \otimes h_{u} \otimes h_{u}
\end{array}\right) \\
& C:=\left(\begin{array}{llllll}
g_{x}+\frac{1}{2} G_{x \sigma \sigma} \sigma^{2} & g_{x} & \frac{1}{2} G_{x x} & g_{x} & G_{x x} & \frac{1}{6} G_{x x x}
\end{array}\right) \\
& D:=\left(\begin{array}{lllllllllllll}
g_{u}+\frac{1}{2} G_{u \sigma \sigma} \sigma^{2} & \frac{1}{2} G_{u u} & G_{x u} & 0 & G_{x u} & 0 & \frac{1}{2} G_{x x u} & 0 & 0 & \frac{1}{2} G_{x u u} & 0 & 0 & \frac{1}{6} G_{u u u}
\end{array}\right) \\
& c:=\left(\begin{array}{c}
0 \\
\frac{1}{2} h_{\sigma \sigma} \sigma^{2}+\frac{1}{2} H_{u u} \Gamma_{2, u} \\
\left(h_{u} \otimes h_{u}\right) \Gamma_{2, u} \\
\frac{1}{6} H_{u u u} \Gamma_{3, u}+\frac{1}{6} H_{\sigma \sigma \sigma} \sigma^{3} \\
\left(h_{u} \otimes \frac{1}{2} H_{u u}\right) \Gamma_{3, u} \\
\left(h_{u} \otimes h_{u} \otimes h_{u}\right) \Gamma_{3, u}
\end{array}\right) \\
& d:=\left(\frac{1}{2} g_{\sigma \sigma} \sigma^{2}+\frac{1}{2} G_{u u} \Gamma_{2, u}+\frac{1}{6} G_{u u u} \Gamma_{3, u}+\frac{1}{6} G_{\sigma \sigma \sigma} \sigma^{3}\right)
\end{aligned}
$$

The system can thus be rewritten as a linear state-space representation

$$
\begin{aligned}
z_{t+1} & =c+A z_{t}+B \xi_{t+1} \\
y_{t+1} & =\bar{y}+d+C z_{t}+D \xi_{t+1}
\end{aligned}
$$

Note that even if u_{t} is Gaussian, ξ_{t} is clearly non-Gaussian, since it's higher-order cumulants are nonzero.

2. Computation of product moments for extended innovations

2.1. First-order approximation

Given a first-order approximation, the innovations are defined as the $n_{\xi} \times 1$ vector $\xi_{t+1}=u_{t+1}$ with $n_{\xi}=n_{u}$ elements. We are interested in product moments $M_{2, \xi}:=E\left(\xi_{t} \otimes \xi_{t}\right), M_{3, \xi}:=E\left(\xi_{t} \otimes \xi_{t} \otimes \xi_{t}\right)$ and $M_{4, \xi}:=E\left(\xi_{t} \otimes \xi_{t} \otimes \xi_{t} \otimes \xi_{t}\right)$ with n_{ξ}^{2}, n_{ξ}^{3} and n_{ξ}^{4} elements, respectively. These, however, contain many duplicate elements. Denote with $\widetilde{M}_{k, \xi}$ the unique elements of $M_{k, \xi}$, we have the following relationships:

$$
M_{2, \xi}=D P_{n_{\xi}} \cdot \widetilde{M}_{2, \xi}, \quad M_{3, \xi}=T P_{n_{\xi}} \cdot \widetilde{M}_{3, \xi}, \quad M_{4, \xi}=Q P_{n_{\xi}} \cdot \widetilde{M}_{4, \xi}
$$

with the duplication matrix $D P_{n_{\xi}}$ defined by Magnus \& Neudecker (1999), and the triplication matrix $T P_{n_{\xi}}$ and quadruplication matrix $Q P_{n_{\xi}}$ similarly defined by Meijer (2005). Note that these matrices are independent of θ and their Moore-Penrose-Inverse always exists, e.g. $\left(Q P_{n_{\xi}}^{\prime} Q P_{n_{\xi}}\right)^{-1} Q P_{n_{\xi}}^{\prime} \cdot M_{4, \xi}=\widetilde{M}_{4, \xi}$. Further, $D P_{n_{\xi}}, T P_{n_{\xi}}$ and $Q P_{n_{\xi}}$ are constructed such that there is a unique ordering in $\widetilde{M}_{k, \xi}$, see Meijer (2005) for an example and more details.

To compute the product-moments of ξ_{t} symbolically we therefore use the following procedure in Matlab given the number of shocks n_{u} and the order of product moments $k=2,3,4$.

1. Define $u_{t+1}=\left(u_{t+1,1}, \ldots u_{t+1, n_{u}}\right)^{\prime}$ and $\Sigma_{u}=\left[s i g_{i j}\right]_{n u \times n u}$ symbolically with $i, j=1, \ldots n_{u}$.
2. Get all integer permutations of $\left[i_{1}, i_{2}, \ldots i_{n_{\xi}}\right]$ that sum up to k , with $i_{j}=1, \ldots, k$ and $j=1, \ldots, n_{\xi}$. Sort them in the ordering of Meijer (2005).
3. For each permutation $\left[i_{1}, i_{2}, \ldots i_{n_{\xi}}\right]$ evaluate symbolically

$$
E\left[\left(\xi_{1, t}\right)^{i_{1}} \cdot\left(\xi_{2, t}\right)^{i_{2}} \cdot \ldots\left(\xi_{n_{\xi}, t}\right)^{i_{n_{\xi}}}\right]
$$

and store it in the vector $\widetilde{M}_{k, \xi}$.

The expressions we get in step 3 contain terms of the form

$$
\text { const. } \cdot E\left[\left(u_{1, t+1}\right)^{i_{u_{1}}} \cdot\left(u_{2, t+1}\right)^{i_{u_{2}}} \cdot . \cdot\left(u_{n_{u}, t+1}\right)^{i_{u_{n_{u}}}}\right] \text {, }
$$

that is joint product moments of the elements of u_{t+1}. Given a function that evaluates the moment structure of u_{t+1} either analytically or numerically, we are able to calculate these terms individually and save them into script files. Note, that these computations need only to be done once for a model, after that we simply evaluate the script files numerically given model parameters θ. Our code can evaluate product moments from the Gaussian as well as Student-t distribution.

Normal distribution. In the case that u_{t} is normally distributed, the joint product moments are functions of the variances and covariances in Σ and can be computed analytically. To this end, we use the very efficient method and Matlab function of Kan (2008) to derive these joint product moments symbolically. The cumulants can then be computed as outlined in the paper.

Student's t distribution. In the case that u_{t} is Student-t distributed with v degrees of freedom, we rewrite u_{t} in terms of a Inverse-Gamma distributed variable $W=v^{-1 / 2} \sim \operatorname{IGAM}(v / 2, v / 2)$, and a normally distributed variable $\varepsilon_{t} \sim N(0, \Sigma), u_{t}=v^{-1 / 2} \varepsilon_{t}$ (similar to Kotz \& Nadarajah (2004) or Roth (2013)). Since W and ε_{t} are independent, we have $E\left(u_{t} u_{t}^{\prime}\right)=E(W) E\left(\varepsilon_{t} \varepsilon_{t}^{\prime}\right)=\frac{v}{v-2} \Sigma$. Whereas all odd product moments of u_{t} are zero, the even product moments $\left(n=\sum_{j=1}^{n_{u}} i_{u_{j}}\right.$ is an even number) are given by

$$
E\left[\left(u_{1, t}\right)^{i_{u_{1}}} \cdot\left(u_{2, t}\right)^{i_{u_{2}}} \cdot . \cdot\left(u_{n_{u}, t}\right)^{i_{u_{n_{u}}}}\right]=E\left[W^{\frac{n}{2}}\right] \cdot E\left[\left(\varepsilon_{1, t}\right)^{i_{u_{1}}} \cdot\left(\varepsilon_{2, t}\right)^{i_{u_{2}}} \cdot . \cdot\left(\varepsilon_{n_{u}, t}\right)^{i_{u_{u_{u}}}}\right] .
$$

The first term is equal to $E\left[W^{k}\right]=\frac{(v / 2)^{k}}{(v / 2-1) \ldots(v / 2-k)}$ and since ε_{t} is multivariate normal, we can use Kan (2008)'s procedure and Matlab function for the second product. The cumulants can then be computed as outlined in the paper.

2.2. Second-order approximation

Given a second-order approximation, the innovations are defined as the $n_{\xi} \times 1$ vector

$$
\xi_{t+1}=\left(u_{t+1}^{\prime} \quad\left(u_{t+1} \otimes u_{t+1}-\operatorname{vec}(\Sigma)\right)^{\prime} \quad\left(x_{t}^{f} \otimes u_{t+1}\right)^{\prime} \quad\left(u_{t+1} \otimes x_{t}^{f}\right)^{\prime}\right)^{\prime}
$$

with $n_{\xi}=n_{u}+n_{u}^{2}+2 n_{x} n_{u}$ elements. We are interested in product moments $M_{2, \xi}:=E\left(\xi_{t} \otimes \xi_{t}\right), M_{3, \xi}:=$ $E\left(\xi_{t} \otimes \xi_{t} \otimes \xi_{t}\right)$ and $M_{4, \xi}:=E\left(\xi_{t} \otimes \xi_{t} \otimes \xi_{t} \otimes \xi_{t}\right)$ with n_{ξ}^{2}, n_{ξ}^{3} and n_{ξ}^{4} elements, respectively. In order to compute these objects efficiently, we first reduce the dimension of ξ_{t}, since it has some duplicate elements. That is, we compute product-moments for the $n_{\tilde{\xi}}=n_{u}+n_{u}\left(n_{u}+1\right) / 2+n_{u} n_{x}$ vector

$$
\tilde{\xi}_{t+1}:=\left(u_{t+1}^{\prime} \quad\left(D P_{n_{u}}^{+}\left(u_{t+1} \otimes u_{t+1}-\operatorname{vec}(\Sigma)\right)\right)^{\prime} \quad\left(x_{t}^{f} \otimes u_{t+1}\right)^{\prime}\right)^{\prime}
$$

since

$$
\xi_{t}=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & D P_{n_{u}} & 0 \\
0 & 0 & I \\
0 & 0 & K_{n_{u}, n_{x}}
\end{array}\right) \tilde{\xi}_{t}:=F_{\xi} \cdot \tilde{\xi}_{t}
$$

with $D P_{n_{u}}^{+}$being the Moore-Penrose-Inverse of the duplication matrix $D P_{n_{u}}$ and $K_{n_{u}, n_{x}}$ the commutation matrix such that $K_{n_{u}, n_{x}}\left(x_{t}^{f} \otimes u_{t+1}\right)=\left(u_{t+1} \otimes x_{t}^{f}\right)$. Then we have

$$
M_{k, \xi}:=\left[\otimes_{j=1}^{k} F_{\xi}\right] \cdot M_{k, \tilde{\xi}}
$$

denoting the k -th $(\mathrm{k}=2,3,4)$-order product moment of $\tilde{\xi}_{t}$. Since $\left[\otimes_{j=1}^{k} F_{\xi}\right]$ does not change with θ, we can focus on $M_{k, \tilde{\xi}} . M_{k, \tilde{\xi}}$, however, contains also many duplicate elements. Denote with $\widetilde{M}_{k, \tilde{\xi}}$ the unique elements of $M_{k, \tilde{\xi}}$, we have the following relationships:

$$
M_{2, \tilde{\xi}}=D P_{n_{\tilde{\xi}}} \cdot \widetilde{M}_{2, \tilde{\xi}}, \quad M_{3, \tilde{\xi}}=T P_{n_{\tilde{\xi}}} \cdot \widetilde{M}_{3, \tilde{\xi}}, \quad M_{4, \tilde{\xi}}=Q P_{n_{\tilde{\xi}}} \cdot \widetilde{M}_{4, \tilde{\xi}}
$$

with the duplication matrix $D P_{n_{\tilde{\xi}}}$ defined by Magnus \& Neudecker (1999), and the triplication matrix $T P_{n_{\tilde{\xi}}}$ and quadruplication matrix $Q P_{n_{\tilde{\xi}}}$ similarly defined by Meijer (2005). Note that these matrices are independent of θ and their Moore-Penrose-Inverse always exists, e.g. $\left(Q P_{n_{\tilde{\xi}}}^{\prime} Q P_{n_{\tilde{\xi}}}\right)^{-1} Q P_{n_{\tilde{\xi}}}^{\prime} \cdot M_{4, \tilde{\xi}}=\widetilde{M}_{4, \tilde{\xi}}$. Further, $D P_{n_{\tilde{\xi}}}, T P_{n_{\tilde{\xi}}}$ and $Q P_{n_{\tilde{\xi}}}$ are constructed such that there is a unique ordering in $\widetilde{M}_{k, \tilde{\xi}}$, see Meijer (2005) for an example and more details.

To compute the product-moments of $\tilde{\xi}_{t}$ symbolically we therefore use the following procedure in Matlab given the number of shocks n_{u}, the number of state variables n_{x} and the order of product moments $k=2,3,4$.

1. Define $u_{t+1}=\left(u_{t+1,1}, \ldots u_{t+1, n_{u}}\right)^{\prime}, x_{t}^{f}=\left(x_{t, 1}^{f}, \ldots x_{t, n_{x}}^{f}\right)^{\prime}$ and $\Sigma_{u}=\left[s i g_{i j}\right]_{n u \times n u}$ symbolically with $i, j=1, \ldots n_{u}$. Set up

$$
\tilde{\xi}_{t}=\left(u_{t}^{\prime}, D P_{n_{u}}^{+}\left(u_{t+1} \otimes u_{t+1}-\operatorname{vec}(\Sigma)\right)^{\prime},\left(x_{t}^{f} \otimes u_{t+1}\right)^{\prime}\right)^{\prime}
$$

2. Get all integer permutations of $\left[i_{1}, i_{2}, \ldots i_{n_{\tilde{\xi}}}\right]$ that sum up to k , with $i_{j}=1, \ldots, k$ and $j=1, \ldots, n_{\tilde{\xi}}$. Sort them in the ordering of Meijer (2005).
3. For each permutation $\left[i_{1}, i_{2}, \ldots i_{n_{\tilde{\xi}}}\right]$ evaluate symbolically

$$
E\left[\left(\tilde{\xi}_{1, t}\right)^{i_{1}} \cdot\left(\tilde{\xi}_{2, t}\right)^{i_{2}} \cdot \ldots\left(\tilde{\xi}_{n \tilde{\xi}}, t\right)^{i_{n}}\right]
$$

and store it in the vector $\widetilde{M}_{k, \xi}$.
4. Optionally: Use Matlab's unique function to further reduce the dimension of $\widetilde{M}_{k, \xi}$.

The expressions we get in step 3 contain terms of the form

$$
\text { const. } \cdot E\left[\left(u_{1, t+1}\right)^{i_{u_{1}}} \cdot\left(u_{2, t+1}\right)^{i_{u_{2}}} \cdot \cdot\left(u_{n_{u}, t+1}\right)^{i_{u_{n_{u}}}}\right] \cdot E\left[\left(x_{1, t}^{f}\right)^{i_{x_{1}}} \cdot\left(x_{2, t}^{f}\right)^{i_{x_{2}}} \cdot . \cdot\left(x_{n_{x}, t}^{f}\right)^{i_{x}^{n_{x}}}\right]
$$

that is joint product moments of the elements of u_{t+1} and x_{t}^{f} (keeping in mind that x_{t}^{f} and u_{t+1} are independent due to the temporal independence of u_{t}). For instance, for $n_{u}=n_{x}=1$ the third-order product moment of $\tilde{\xi}_{t}$ is equal to

$$
\tilde{M}_{3, \xi}=\operatorname{vec}\left(E\left[\begin{array}{cc}
u^{3} & u^{4}-\sigma_{u}^{2} u^{2} \\
u^{3} x & \sigma_{u}^{4} u-2 \sigma_{u}^{2} u^{3}+u^{5} \\
x u^{4}-\sigma_{u}^{2} x u^{2} & u^{3} x^{2} \\
-\sigma_{u}^{6}+3 \sigma_{u}^{4} u^{2}-3 \sigma_{u}^{2} u^{4}+u^{6} & x \sigma_{u}^{4} u-2 x \sigma_{u}^{2} u^{3}+x u^{5} \\
u^{4} x^{2}-\sigma_{u}^{2} u^{2} x^{2} & u^{3} x^{3}
\end{array}\right]\right)
$$

where we dropped sub- and superscripts and $E\left(u^{2}\right)=\sigma_{u}^{2}$. Given a function that evaluates the moment structure of x_{t}^{f} and u_{t+1} either analytically or numerically, we are able to calculate these terms individually and save them into script files. Note, that these computations need only to be done once for a model, after that we simply evaluate the script files numerically given model parameters θ. Our code can evaluate product moments from the Gaussian as well as Student-t distribution.

[^0]Normal distribution. In the case that u_{t} is normally distributed, x_{t}^{f} is also Gaussian with covariance matrix Σ_{x}. Therefore,

$$
\binom{u_{t+1}}{x_{t}^{f}} \sim N\left(\binom{0}{0},\left(\begin{array}{cc}
\Sigma & 0 \\
0 & \Sigma_{x}
\end{array}\right)\right)
$$

is multivariate normal. All joint product moments are therefore functions of the variances and covariances in Σ and Σ_{x} and can be computed analytically. To this end, we use the very efficient method and Matlab function of $\operatorname{Kan}(2008)$ to derive these joint product moments symbolically. For our example with $n_{u}=$ $n_{x}=1$ and Gaussian u_{t}, we get the unique entries

$$
\begin{aligned}
& \widetilde{M}_{2, \xi}=\left[\sigma_{u}^{2}, 0,0,2 \sigma_{u}^{4}, 0, \sigma_{u}^{2} \sigma_{x}^{2}\right]^{\prime} \\
& \widetilde{M}_{3, \xi}=\left[0,2 \sigma_{u}^{4}, 0,0,0,0,8 \sigma_{u}^{6}, 0,2 \sigma_{u}^{4} \sigma_{x}^{2}, 0\right]^{\prime} \\
& \widetilde{M}_{4, \xi}=\left[3 \sigma_{u}^{4}, 0,0,10 \sigma_{u}^{6}, 0,3 \sigma_{u}^{4} \sigma_{x}^{2}, 0,0,0,0,60 \sigma_{u}^{8}, 0,10 \sigma_{u}^{6} \sigma_{x}^{2}, 0,9 \sigma_{u}^{4} \sigma_{x}^{4}\right]^{\prime}
\end{aligned}
$$

where $E\left(x_{t}^{f 2}\right)=\sigma_{x}^{2}$. The cumulants can then be computed as outlined in the paper. Since the thirdorder cumulant of a Gaussian process must be zero, we now see, that ξ_{t} is clearly non-Gaussian, since its third-order cumulant is different from zero, even if the underlying distribution for u_{t} is Gaussian.

Student's t distribution. In the case that u_{t} is Student-t distributed with v degrees of freedom, we rewrite u_{t} in terms of a Inverse-Gamma distributed variable $W=v^{-1 / 2} \sim \operatorname{IGAM}(v / 2, v / 2)$, and a normally distributed variable $\varepsilon_{t} \sim N(0, \Sigma)$, $u_{t}=v^{-1 / 2} \varepsilon_{t}$ (similar to Kotz \& Nadarajah (2004) or Roth (2013)). Since W and ε_{t} are independent, we have $E\left(u_{t} u_{t}^{\prime}\right)=E(W) E\left(\varepsilon_{t} \varepsilon_{t}^{\prime}\right)=\frac{v}{v-2} \Sigma$. Whereas all odd product moments of u_{t} are zero, the even product moments ($n=\sum_{j=1}^{n_{u}} i_{u_{j}}$ is an even number) are given by

$$
E\left[\left(u_{1, t}\right)^{i_{u_{1}}} \cdot\left(u_{2, t}\right)^{i_{u_{2}}} \cdot . \cdot\left(u_{n_{u}, t}\right)^{i_{u_{n_{u}}}}\right]=E\left[W^{\frac{n}{2}}\right] \cdot E\left[\left(\varepsilon_{1, t}\right)^{i_{u_{1}}} \cdot\left(\varepsilon_{2, t}\right)^{i_{u_{2}}} \cdot . \cdot\left(\varepsilon_{n_{u}}, t\right)^{i_{u_{n_{u}}}}\right] .
$$

The first term is equal to $E\left[W^{k}\right]=\frac{(v / 2)^{k}}{(v / 2-1) \ldots(v / 2-k)}$ and since ε_{t} is multivariate normal, we can use Kan (2008)'s procedure and Matlab function for the second product. Similar arguments apply to the product moments of x_{t}^{f}, for instance the variance is given by

$$
\operatorname{vec}\left(\Sigma_{x}\right)=E\left[x_{t}^{f} \otimes x_{t}^{f}\right]=\underbrace{E[W]}_{\frac{v}{v-2}} \cdot\left(I_{n_{x}^{2}}-h_{x} \otimes h_{x}\right)^{-1}\left(h_{u} \otimes h_{u}\right) \cdot \underbrace{E\left[\varepsilon_{t} \otimes \varepsilon_{t}\right]}_{v e c(\Sigma)} .
$$

Thus, odd product moments are also zero, whereas even product moments can also be computed symbolically by Kan (2008)'s procedure and Matlab function, however, adjusted for $E\left[W^{n / 2}\right]$. The cumulants can then be computed as outlined in the paper.

2.3. Third-order approximation

Given a third-order approximation, the innovations are defined as the $n_{\xi} \times 1$ vector

$$
\xi_{t+1}:=\left(\begin{array}{c}
u_{t+1} \\
u_{t+1} \otimes u_{t+1}-\Gamma_{2 u} \\
\hat{x}_{t}^{f} \otimes u_{t+1} \\
u_{t+1} \otimes \hat{x}_{t}^{f} \\
\hat{x}_{t}^{s} \otimes u_{t+1} \\
u_{t+1} \otimes \hat{x}_{t}^{s} \\
\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \otimes u_{t+1} \\
\hat{x}_{t}^{f} \otimes u_{t+1} \otimes \hat{x}_{t}^{f} \\
u_{t+1} \otimes \hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \\
\hat{x}_{t}^{f} \otimes u_{t+1} \otimes u_{t+1} \\
u_{t+1} \otimes \hat{x}_{t}^{f} \otimes u_{t+1} \\
u_{t+1} \otimes u_{t+1} \otimes \hat{x}_{t}^{f} \\
u_{t+1} \otimes u_{t+1} \otimes u_{t+1}-\Gamma_{3, u}
\end{array}\right)
$$

with $n_{\xi}=n_{u}+n_{u}^{2}+2 n_{x} n_{u}+2 n_{x} n_{u}+3 n_{x}^{2} n_{u}+3 n_{x} n_{u}^{2}+n_{u}^{2}$ elements. We are interested in product moments $M_{2, \xi}:=E\left(\xi_{t} \otimes \xi_{t}\right), M_{3, \xi}:=E\left(\xi_{t} \otimes \xi_{t} \otimes \xi_{t}\right)$ and $M_{4, \xi}:=E\left(\xi_{t} \otimes \xi_{t} \otimes \xi_{t} \otimes \xi_{t}\right)$ with n_{ξ}^{2}, n_{ξ}^{3} and n_{ξ}^{4} elements, respectively. In order to compute these objects efficiently, we first reduce the dimension of ξ_{t}, since it has some duplicate elements. That is, we compute product-moments for the $n_{\tilde{\xi}}=n_{u}+n_{u}\left(n_{u}+1\right) / 2+2 n_{x} n_{u}+$ $n_{x}^{2} n_{u}+n_{x} n_{u}^{2}+n_{u}\left(n_{u}+1\right)\left(n_{u}+2\right) / 6$ vector

$$
\tilde{\xi}_{t+1}:=\left(\begin{array}{c}
u_{t+1} \\
D P_{n_{u}}^{+}\left(u_{t+1} \otimes u_{t+1}-\Gamma_{2 u}\right) \\
\hat{x}_{t}^{f} \otimes u_{t+1} \\
\hat{x}_{t}^{s} \otimes u_{t+1} \\
\hat{x}_{t}^{f} \otimes \hat{x}_{t}^{f} \otimes u_{t+1} \\
\hat{x}_{t}^{f} \otimes u_{t+1} \otimes u_{t+1} \\
T P_{n_{u}}^{+}\left(u_{t+1} \otimes u_{t+1} \otimes u_{t+1}-\Gamma_{3, u}\right)
\end{array}\right)
$$

given that
$F_{\xi}=\left[\begin{array}{ccccccc}I_{u} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & D P_{u} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & I_{x u} & 0 & 0 & 0 & 0 \\ 0 & 0 & K_{u x} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I_{x u} & 0 & 0 & 0 \\ 0 & 0 & 0 & K_{u x} & D P_{x} \otimes I_{u} & 0 & 0 \\ 0 & 0 & 0 & 0 & \left(I_{x} \otimes K_{u x}\right)\left(D P_{x} \otimes I_{u}\right) & 0 \\ 0 & 0 & 0 & 0 & 0 & \left(I_{x} \otimes D P_{u}\right) & 0 \\ 0 & 0 & 0 & 0 & \left(K_{u x} \otimes I_{x}\right)\left(I_{x} \otimes K_{u x}\right)\left(D P_{x} \otimes I_{u}\right) & 0 \\ 0 & 0 & 0 & 0 & 0 & \left(K_{u x} \otimes I_{u}\right)\left(I_{x} \otimes D P_{u}\right) & 0 \\ 0 & 0 & 0 & 0 & 0 & \left(I_{u} \otimes K_{u x}\right)\left(K_{u x} \otimes I_{u}\right)\left(I_{x} \otimes D P_{u}\right) & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & T P_{u}\end{array}\right]$
since

$$
\xi_{t}=F_{\xi} \cdot \tilde{\xi}_{t}
$$

and with $D P_{n_{u}}^{+}$being the Moore-Penrose-Inverse of the duplication matrix $D P_{n_{u}}, T P_{n_{u}}^{+}$being the Moore-Penrose-Inverse of the triplication matrix $T P_{n_{u}}$ and $K_{n_{x}, n_{u}}$ the commutation matrix such that $K_{n_{x}, n_{u}}\left(x_{t}^{f} \otimes\right.$ $\left.u_{t+1}\right)=\left(u_{t+1} \otimes x_{t}^{f}\right)$. Then we have

$$
M_{k, \xi}:=\left[\otimes_{j=1}^{k} F_{\xi}\right] \cdot M_{k, \tilde{\xi}}
$$

denoting the k-th $(\mathrm{k}=2,3,4)$-order product moment of $\tilde{\xi}_{t}$. Since $\left[\otimes_{j=1}^{k} F_{\xi}\right]$ does not change with θ, we can focus on $M_{k, \tilde{\xi}} . M_{k, \tilde{\xi}}$, however, contains also many duplicate elements. Denote with $\widetilde{M}_{k, \tilde{\xi}}$ the unique elements of $M_{k, \tilde{\xi}}$, we have the following relationships:

$$
M_{2, \tilde{\xi}}=D P_{n_{\tilde{\xi}}} \cdot \widetilde{M}_{2, \tilde{\xi}}, \quad M_{3, \tilde{\xi}}=T P_{n_{\tilde{\xi}}} \cdot \widetilde{M}_{3, \tilde{\xi}}, \quad M_{4, \tilde{\xi}}=Q P_{n_{\tilde{\xi}}} \cdot \widetilde{M}_{4, \tilde{\xi}}
$$

with the duplication matrix $D P_{n_{\tilde{\xi}}}$ defined by Magnus \& Neudecker (1999), and the triplication matrix $T P_{n_{\tilde{\xi}}}$ and quadruplication matrix $Q P_{n_{\tilde{\xi}}}$ similarly defined by Meijer (2005). Note that these matrices are

[^1]independent of θ and their Moore-Penrose-Inverse always exists, e.g. $\left(Q P_{n_{\tilde{\xi}}}^{\prime} Q P_{n_{\tilde{\xi}}}\right)^{-1} Q P_{n_{\tilde{\xi}}}^{\prime} \cdot M_{4, \tilde{\xi}}=\widetilde{M}_{4, \tilde{\xi}}$. Further, $D P_{n_{\tilde{\xi}}}, T P_{n_{\tilde{\xi}}}$ and $Q P_{n_{\tilde{\xi}}}$ are constructed such that there is a unique ordering in $\widetilde{M}_{k, \tilde{\xi}}$, see Meijer (2005) for an example and more details.

The product-moments of $\tilde{\xi}_{t}$ can thus be computed symbolically as outlined in the second-order approximation.

References

Andreasen, M. M., Fernández-Villaverde, J., \& Rubio-Ramírez, J. F. (2014). The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications. Working Paper Aarhus University.
Kan, R. (2008). From moments of sum to moments of product. Journal of Multivariate Analysis, 99, 542-554. doi 10.1016/ j.jmva.2007.01.013

Kotz, S., \& Nadarajah, S. (2004). Multivariate t-distributions and their applications.
Magnus, J., \& Neudecker, H. (1999). Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley Series in Probability and Statistics: Texts and References Section. Wiley.
Meijer, E. (2005). Matrix algebra for higher order moments. Linear Algebra and its Applications, 410, 112-134. doi 10.1016/ j.laa.2005.02.040

Roth, M. (2013). On the multivariate t distribution. Technical Report.

[^0]: ${ }^{1}$ Actually $\widetilde{M}_{k, \tilde{\xi}}$ has some further duplicate terms for $n_{u}, n_{x}>1$ due to higher-order cross terms of u_{t+1} and x_{t}^{f}, which we can further reduce using indices from the unique function of Matlab.

[^1]: ${ }^{2}$ Actually $\widetilde{M}_{k, \tilde{\xi}}$ has some further duplicate terms for $n_{u}, n_{x}>1$ due to higher-order cross terms of u_{t+1} and x_{t}^{f}, which we can further reduce using indices from the unique function of Matlab.

