
Higher-order statistics for DSGE models
ONLINE APPENDIX

NOT FOR PUBLICATION

Contents

1 Exact expressions for pruned state-space representation 2
1.1 State-space system of first-order approximation . 2
1.2 State-space system of second-order approximation and pruning 3
1.3 State-space system of third-order approximation and pruning 3

2 Computation of product moments for extended innovations 4
2.1 First-order approximation . 4
2.2 Second-order approximation . 5
2.3 Third-order approximation . 7

Preprint submitted to Econometrics and Statistics August 29, 2016

1. Exact expressions for pruned state-space representation

This is based on the technical appendix of Andreasen et al. (2014).

First we derive some additional expressions:

ŷ
f
t+1 = gxx̂

f
t + guut+1 (1)

ŷ
s
t+1 = gxx̂

s
t +

1

2

[
Gxx

(
x̂
f
t ⊗ x̂

f
t

)
+ 2Gxu

(
x̂
f
t ⊗ ut+1

)
+Guu (ut+1 ⊗ ut+1) + gσσσ

2
]

(2)

ŷ
rd
t+1 = gxx̂

rd
t +Gxx

(
x̂
f
t ⊗ x̂

s
t

)
+Gxu

(
x̂
s
t ⊗ ut+1

)
+

3

6
Gxσσx̂

f
t +

3

6
Guσσut+1

+
1

6
Gxxx

(
x̂
f
t ⊗ x̂

f
t ⊗ x̂

f
t

)
+

1

6
Guuu (ut+1 ⊗ ut+1 ⊗ ut+1)

+
3

6
Gxxu

(
x̂
f
t ⊗ x̂

f
t ⊗ ut+1

)
+

3

6
Gxuu

(
x̂
f
t ⊗ ut+1 ⊗ ut+1

) (3)

x̂
f
t+1 = hxx̂

f
t + huut+1 (4)

x̂
s
t+1 = hxx̂

s
t +

1

2

[
Hxx

(
x̂
f
t ⊗ x̂

f
t

)
+ 2Hxu

(
x̂
f
t ⊗ ut+1

)
+Huu (ut+1 ⊗ ut+1) + hσσσ

2
]

(5)

x̂
rd
t+1 = hxx̂

rd
t +Hxx

(
x̂
f
t ⊗ x̂

s
t

)
+Hxu

(
x̂
s
t ⊗ ut+1

)
+

3

6
Hxσσx̂

f
t +

3

6
Huσσut+1

+
1

6
Hxxx

(
x̂
f
t ⊗ x̂

f
t ⊗ x̂

f
t

)
+

1

6
Huuu (ut+1 ⊗ ut+1 ⊗ ut+1)

+
3

6
Hxxu

(
x̂
f
t ⊗ x̂

f
t ⊗ ut+1

)
+

3

6
Hxuu

(
x̂
f
t ⊗ ut+1 ⊗ ut+1

) (6)

(
x̂
f
t+1 ⊗ x̂

f
t+1

)
= (hx ⊗ hx)

(
x̂
f
t ⊗ x̂

f
t

)
+ (hu ⊗ hu) (ut+1 ⊗ ut+1 − Γ2u + Γ2u)

+ (hx ⊗ hu)
(
x̂
f
t ⊗ ut+1

)
+ (hu ⊗ hx)

(
ut+1 ⊗ x̂ft

) (7)

(
x̂
f
t+1 ⊗ x̂

s
t+1

)
=

(
hx ⊗

σ2

2
hσσ

)
x̂
f
t +

(
hu ⊗

σ2

2
hσσ

)
ut+1

+ (hx ⊗ hx)
(
x̂
f
t ⊗ x̂

s
t

)
+ (hu ⊗ hx)

(
ut+1 ⊗ x̂st

)
+

(
hx ⊗

1

2
Hxx

)(
x̂
f
t ⊗ x̂

f
t ⊗ x̂

f
t

)
+

(
hu ⊗

1

2
Huu

)
(ut+1 ⊗ ut+1 ⊗ ut+1 − Γ3u + Γ3u)

+

(
hx ⊗

1

2
Huu

)(
x̂
f
t ⊗ ut+1 ⊗ ut+1

)
+

(
hu ⊗

1

2
Hxu

)(
ut+1 ⊗ x̂ft ⊗ ut+1

)
+ (hx ⊗Hxu)

(
x̂
f
t ⊗ x̂

f
t ⊗ ut+1

)
+ (hu ⊗Hxx)

(
ut+1 ⊗ x̂ft ⊗ x̂

f
t

)

(8)

(
x̂
f
t+1 ⊗ x̂

f
t+1 ⊗ x̂

f
t+1

)
= (hx ⊗ hx ⊗ hx)

(
x̂
f
t ⊗ x̂

f
t ⊗ x̂

f
t

)
+ (hx ⊗ hu ⊗ hu)

(
x̂
f
t ⊗ ut+1 ⊗ ut+1

)
+ (hx ⊗ hx ⊗ hu)

(
x̂
f
t ⊗ x̂

f
t ⊗ ut+1

)
+ (hx ⊗ hu ⊗ hx)

(
x̂
f
t ⊗ ut+1 ⊗ x̂ft

)
+ (hu ⊗ hx ⊗ hx)

(
ut+1 ⊗ x̂ft ⊗ x̂

f
t

)
+ (hu ⊗ hu ⊗ hu) (ut+1 ⊗ ut+1 ⊗ ut+1 − Γ3u + Γ3u)

+ (hu ⊗ hx ⊗ hu)
(
ut+1 ⊗ x̂ft ⊗ ut+1

)
+ (hu ⊗ hu ⊗ hx)

(
ut+1 ⊗ ut+1 ⊗ x̂ft

)
(9)

1.1. State-space system of first-order approximation

In a first-order approximation the system dynamics are captured by equations (1) and (4), we are

therefore already working in a linear state-space system. That is, define zt := x̂ft , yt := ŷft + ȳ, ξt+1 := ut+1,
c := 0, d := 0, A := hx, B := hu, C := gx and D := gu, then the equations can be rewritten as

zt+1 = c+Azt +Bξt+1

yt+1 = ȳ + d+ Czt +Dξt+1

Note that if ut is Gaussian, ξt is clearly Gaussian as well.

2

1.2. State-space system of second-order approximation and pruning

In a second-order approximation the system dynamics are captured by equations (1), (2), (4), (5) and
(7). To set up the pruned state-space system we define

yt = ŷft + ŷst + ȳ, zt :=

 x̂ft
x̂st

x̂ft ⊗ x̂ft

 , ξt+1 :=


ut+1

ut+1 ⊗ ut+1 − Γ2u

x̂ft ⊗ ut+1

ut+1 ⊗ x̂ft


and

A :=

hx 0 0
0 hx

1
2Hxx

0 0 hx ⊗ hx

 , B :=

hu 0 0 0
0 1

2Huu Hxu 0
0 hu ⊗ hu hx ⊗ hu hu ⊗ hx

 ,

C :=
(
gx gx

1
2Gxx

)
D :=

(
gu

1
2Guu Gxu 0

)
c :=

 0
1
2 (hσσσ

2 +HuuΓ2,u

(hu ⊗ hu)Γ2,u

 d :=
(

1
2gσσσ

2 + 1
2GuuΓ2,u

)
The system can thus be rewritten as a linear state-space representation

zt+1 = c+Azt +Bξt+1

yt+1 = ȳ + d+ Czt +Dξt+1

Note that even if ut is Gaussian, ξt is clearly non-Gaussian.

1.3. State-space system of third-order approximation and pruning

In a third-order approximation the system dynamics are captured by equations (1), (2), (3), (4), (5),(6),
(7), (8) and (9). To set up the pruned state-space system we define

yt = ŷft + ŷst + ŷrdt + ȳ, zt :=



x̂ft
x̂st

x̂ft ⊗ x̂ft
x̂rdt

x̂ft ⊗ x̂st
x̂ft ⊗ x̂ft ⊗ xft


, ξt+1 :=



ut+1

ut+1 ⊗ ut+1 − Γ2u

x̂ft ⊗ ut+1

ut+1 ⊗ x̂ft
x̂st ⊗ ut+1

ut+1 ⊗ x̂st
x̂ft ⊗ x̂ft ⊗ ut+1

x̂ft ⊗ ut+1 ⊗ x̂ft
ut+1 ⊗ x̂ft ⊗ x̂ft
x̂ft ⊗ ut+1 ⊗ ut+1

ut+1 ⊗ x̂ft ⊗ ut+1

ut+1 ⊗ ut+1 ⊗ x̂ft
ut+1 ⊗ ut+1 ⊗ ut+1 − Γ3,u


and

A :=


hx 0 0 0 0 0
0 hx

1
2Hxx 0 0 0

0 0 hx ⊗ hx 0 0 0
3
6Hxσσσ

2 0 0 hx Hxx
1
6Hxxx

hx ⊗ 1
2hσσσ

2 0 0 0 hx ⊗ hx hx ⊗ 1
2Hxx)

0 0 0 0 0 hx ⊗ hx ⊗ hx)];


3

B :=



hu 0 0 0 0 0 0 0 0 0 0 0 0

0 1
2
Huu Hxu 0 0 0 0 0 0 0 0 0 0

0 hu⊗hu hx⊗hu hu⊗hx 0 0 0 0 0 0 0 0 0
3
6
Huσσσ

2 0 0 0 Hxu 0 3
6
Hxxu 0 0 3

6
Hxuu 0 0 1

6
Huuu

hu⊗ 1
2
hσσσ

2 0 0 0 0 hu⊗hx hx⊗Hxu 0 hu⊗ 1
2
Hxx hx⊗ 1

2
Huu hu⊗Hxu 0 hu⊗ 1

2
Huu

0 0 0 0 0 0 hx⊗hx⊗hu hx⊗hu⊗hx hu⊗hx⊗hx hx⊗hu⊗hu hu⊗hx⊗hu hu⊗hu⊗hx hu⊗hu⊗hu


,

C :=
(
gx + 1

2Gxσσσ
2 gx

1
2Gxx gx Gxx

1
6Gxxx

)
D :=

(
gu + 1

2Guσσσ
2 1

2Guu Gxu 0 Gxu 0 1
2Gxxu 0 0 1

2Gxuu 0 0 1
6Guuu

)

c :=


0

1
2hσσσ

2 + 1
2HuuΓ2,u

(hu ⊗ hu)Γ2,u
1
6HuuuΓ3,u + 1

6Hσσσσ
3

(hu ⊗ 1
2Huu)Γ3,u

(hu ⊗ hu ⊗ hu)Γ3,u


d :=

(
1
2gσσσ

2 + 1
2GuuΓ2,u + 1

6GuuuΓ3,u + 1
6Gσσσσ

3
)

The system can thus be rewritten as a linear state-space representation

zt+1 = c+Azt +Bξt+1

yt+1 = ȳ + d+ Czt +Dξt+1

Note that even if ut is Gaussian, ξt is clearly non-Gaussian, since it’s higher-order cumulants are nonzero.

2. Computation of product moments for extended innovations

2.1. First-order approximation

Given a first-order approximation, the innovations are defined as the nξ × 1 vector ξt+1 = ut+1 with
nξ = nu elements. We are interested in product moments M2,ξ := E(ξt ⊗ ξt), M3,ξ := E(ξt ⊗ ξt ⊗ ξt)
and M4,ξ := E(ξt ⊗ ξt ⊗ ξt ⊗ ξt) with n2

ξ , n
3
ξ and n4

ξ elements, respectively. These, however, contain many

duplicate elements. Denote with M̃k,ξ the unique elements of Mk,ξ, we have the following relationships:

M2,ξ = DPnξ · M̃2,ξ, M3,ξ = TPnξ · M̃3,ξ, M4,ξ = QPnξ · M̃4,ξ,

with the duplication matrix DPnξ defined by Magnus & Neudecker (1999), and the triplication matrix
TPnξ and quadruplication matrix QPnξ similarly defined by Meijer (2005). Note that these matrices are

independent of θ and their Moore-Penrose-Inverse always exists, e.g. (QP ′nξQPnξ)
−1QP ′nξ ·M4,ξ = M̃4,ξ.

Further, DPnξ , TPnξ and QPnξ are constructed such that there is a unique ordering in M̃k,ξ, see Meijer
(2005) for an example and more details.

To compute the product-moments of ξt symbolically we therefore use the following procedure in Matlab
given the number of shocks nu and the order of product moments k=2,3,4.

1. Define ut+1 = (ut+1,1, . . . ut+1,nu)′ and Σu = [sigij]nu×nu symbolically with i, j = 1, . . . nu.

2. Get all integer permutations of [i1, i2, . . . inξ] that sum up to k, with ij = 1, . . . , k and j = 1, . . . , nξ.
Sort them in the ordering of Meijer (2005).

3. For each permutation [i1, i2, . . . inξ] evaluate symbolically

E
[
(ξ1,t)

i1 · (ξ2,t)
i2 · . . . (ξnξ,t)

inξ

]
and store it in the vector M̃k,ξ.

4

The expressions we get in step 3 contain terms of the form

const. · E[(u1,t+1)iu1 · (u2,t+1)iu2 · . · (unu,t+1)iunu],

that is joint product moments of the elements of ut+1. Given a function that evaluates the moment structure
of ut+1 either analytically or numerically, we are able to calculate these terms individually and save them
into script files. Note, that these computations need only to be done once for a model, after that we simply
evaluate the script files numerically given model parameters θ. Our code can evaluate product moments
from the Gaussian as well as Student-t distribution.

Normal distribution. In the case that ut is normally distributed, the joint product moments are functions
of the variances and covariances in Σ and can be computed analytically. To this end, we use the very
efficient method and Matlab function of Kan (2008) to derive these joint product moments symbolically.
The cumulants can then be computed as outlined in the paper.

Student’s t distribution. In the case that ut is Student-t distributed with v degrees of freedom, we rewrite
ut in terms of a Inverse-Gamma distributed variable W = v−1/2 ∼ IGAM(v/2, v/2), and a normally
distributed variable εt ∼ N(0,Σ), ut = v−1/2εt (similar to Kotz & Nadarajah (2004) or Roth (2013)). Since
W and εt are independent, we have E(utu

′
t) = E(W)E(εtε

′
t) = v

v−2Σ. Whereas all odd product moments

of ut are zero, the even product moments (n =
∑nu
j=1 iuj is an even number) are given by

E[(u1,t)
iu1 · (u2,t)

iu2 · . · (unu,t)
iunu] = E[W

n
2] · E[(ε1,t)

iu1 · (ε2,t)
iu2 · . · (εnu,t)

iunu].

The first term is equal to E[W k] = (v/2)k

(v/2−1)...(v/2−k) and since εt is multivariate normal, we can use Kan

(2008)’s procedure and Matlab function for the second product. The cumulants can then be computed as
outlined in the paper.

2.2. Second-order approximation

Given a second-order approximation, the innovations are defined as the nξ × 1 vector

ξt+1 =
(
u′t+1 (ut+1 ⊗ ut+1 − vec(Σ))′ (xft ⊗ ut+1)′ (ut+1 ⊗ xft)′

)′
with nξ = nu + n2

u + 2nxnu elements. We are interested in product moments M2,ξ := E(ξt ⊗ ξt), M3,ξ :=
E(ξt⊗ξt⊗ξt) and M4,ξ := E(ξt⊗ξt⊗ξt⊗ξt) with n2

ξ , n
3
ξ and n4

ξ elements, respectively. In order to compute
these objects efficiently, we first reduce the dimension of ξt, since it has some duplicate elements. That is,
we compute product-moments for the nξ̃ = nu + nu(nu + 1)/2 + nunx vector

ξ̃t+1 :=
(
u′t+1 (DP+

nu(ut+1 ⊗ ut+1 − vec(Σ)))′ (xft ⊗ ut+1)′
)′

since

ξt =


I 0 0
0 DPnu 0
0 0 I
0 0 Knu,nx

 ξ̃t := Fξ · ξ̃t

with DP+
nu being the Moore-Penrose-Inverse of the duplication matrix DPnu and Knu,nx the commutation

matrix such that Knu,nx(xft ⊗ ut+1) = (ut+1 ⊗ xft). Then we have

Mk,ξ := [⊗kj=1Fξ] ·Mk,ξ̃

5

denoting the k-th (k=2,3,4)-order product moment of ξ̃t. Since [⊗kj=1Fξ] does not change with θ, we can

focus on Mk,ξ̃. Mk,ξ̃, however, contains also many duplicate elements. Denote with M̃k,ξ̃ the unique elements
of Mk,ξ̃, we have the following relationships:

M2,ξ̃ = DPnξ̃ · M̃2,ξ̃, M3,ξ̃ = TPnξ̃ · M̃3,ξ̃, M4,ξ̃ = QPnξ̃ · M̃4,ξ̃,

with the duplication matrix DPnξ̃ defined by Magnus & Neudecker (1999), and the triplication matrix

TPnξ̃ and quadruplication matrix QPnξ̃ similarly defined by Meijer (2005).1 Note that these matrices are

independent of θ and their Moore-Penrose-Inverse always exists, e.g. (QP ′nξ̃QPnξ̃)
−1QP ′nξ̃ ·M4,ξ̃ = M̃4,ξ̃.

Further, DPnξ̃ , TPnξ̃ and QPnξ̃ are constructed such that there is a unique ordering in M̃k,ξ̃, see Meijer

(2005) for an example and more details.
To compute the product-moments of ξ̃t symbolically we therefore use the following procedure in Matlab

given the number of shocks nu, the number of state variables nx and the order of product moments k=2,3,4.

1. Define ut+1 = (ut+1,1, . . . ut+1,nu)′, xft = (xft,1, . . . x
f
t,nx)′ and Σu = [sigij]nu×nu symbolically with

i, j = 1, . . . nu. Set up

ξ̃t = (u′t, DP
+
nu(ut+1 ⊗ ut+1 − vec(Σ))′, (xft ⊗ ut+1)′)′.

2. Get all integer permutations of [i1, i2, . . . inξ̃] that sum up to k, with ij = 1, . . . , k and j = 1, . . . , nξ̃.

Sort them in the ordering of Meijer (2005).

3. For each permutation [i1, i2, . . . inξ̃] evaluate symbolically

E
[
(ξ̃1,t)

i1 · (ξ̃2,t)
i2 · . . . (ξ̃nξ̃,t)

in
ξ̃

]
and store it in the vector M̃k,ξ.

4. Optionally: Use Matlab’s unique function to further reduce the dimension of M̃k,ξ.

The expressions we get in step 3 contain terms of the form

const. · E[(u1,t+1)iu1 · (u2,t+1)iu2 · . · (unu,t+1)iunu] · E[(xf1,t)
ix1 · (xf2,t)

ix2 · . · (xfnx,t)
inxx],

that is joint product moments of the elements of ut+1 and xft (keeping in mind that xft and ut+1 are
independent due to the temporal independence of ut). For instance, for nu = nx = 1 the third-order
product moment of ξ̃t is equal to

M̃3,ξ = vec

E


u3 u4 − σ2
uu

2

u3x σ4
uu− 2σ2

uu
3 + u5

xu4 − σ2
uxu

2 u3x2

−σ6
u + 3σ4

uu
2 − 3σ2

uu
4 + u6 xσ4

uu− 2xσ2
uu

3 + xu5

u4x2 − σ2
uu

2x2 u3x3


′

where we dropped sub- and superscripts and E(u2) = σ2
u. Given a function that evaluates the moment

structure of xft and ut+1 either analytically or numerically, we are able to calculate these terms individually
and save them into script files. Note, that these computations need only to be done once for a model,
after that we simply evaluate the script files numerically given model parameters θ. Our code can evaluate
product moments from the Gaussian as well as Student-t distribution.

1Actually M̃k,ξ̃ has some further duplicate terms for nu, nx > 1 due to higher-order cross terms of ut+1 and xft , which we

can further reduce using indices from the unique function of Matlab.

6

Normal distribution. In the case that ut is normally distributed, xft is also Gaussian with covariance matrix
Σx. Therefore, (

ut+1

xft

)
∼ N

((
0
0

)
,

(
Σ 0
0 Σx

))
is multivariate normal. All joint product moments are therefore functions of the variances and covariances
in Σ and Σx and can be computed analytically. To this end, we use the very efficient method and Matlab
function of Kan (2008) to derive these joint product moments symbolically. For our example with nu =
nx = 1 and Gaussian ut, we get the unique entries

M̃2,ξ =
[
σ2
u, 0, 0, 2σ4

u, 0, σ2
uσ

2
x

]′
M̃3,ξ =

[
0, 2σ4

u, 0, 0, 0, 0, 8σ6
u, 0, 2σ4

uσ
2
x, 0

]′
M̃4,ξ =

[
3σ4

u, 0, 0, 10σ6
u, 0, 3σ4

uσ
2
x, 0, 0, 0, 0, 60σ8

u, 0, 10σ6
uσ

2
x, 0, 9σ4

uσ
4
x

]′
where E(xf2

t) = σ2
x. The cumulants can then be computed as outlined in the paper. Since the third-

order cumulant of a Gaussian process must be zero, we now see, that ξt is clearly non-Gaussian, since its
third-order cumulant is different from zero, even if the underlying distribution for ut is Gaussian.

Student’s t distribution. In the case that ut is Student-t distributed with v degrees of freedom, we rewrite
ut in terms of a Inverse-Gamma distributed variable W = v−1/2 ∼ IGAM(v/2, v/2), and a normally
distributed variable εt ∼ N(0,Σ), ut = v−1/2εt (similar to Kotz & Nadarajah (2004) or Roth (2013)). Since
W and εt are independent, we have E(utu

′
t) = E(W)E(εtε

′
t) = v

v−2Σ. Whereas all odd product moments

of ut are zero, the even product moments (n =
∑nu
j=1 iuj is an even number) are given by

E[(u1,t)
iu1 · (u2,t)

iu2 · . · (unu,t)
iunu] = E[W

n
2] · E[(ε1,t)

iu1 · (ε2,t)
iu2 · . · (εnu,t)

iunu].

The first term is equal to E[W k] = (v/2)k

(v/2−1)...(v/2−k) and since εt is multivariate normal, we can use Kan

(2008)’s procedure and Matlab function for the second product. Similar arguments apply to the product

moments of xft , for instance the variance is given by

vec(Σx) = E[xft ⊗ xft] = E[W]︸ ︷︷ ︸
v
v−2

·(In2
x
− hx ⊗ hx)−1(hu ⊗ hu) · E[εt ⊗ εt]︸ ︷︷ ︸

vec(Σ)

.

Thus, odd product moments are also zero, whereas even product moments can also be computed symbolically
by Kan (2008)’s procedure and Matlab function, however, adjusted for E[Wn/2]. The cumulants can then
be computed as outlined in the paper.

2.3. Third-order approximation
Given a third-order approximation, the innovations are defined as the nξ × 1 vector

ξt+1 :=



ut+1

ut+1 ⊗ ut+1 − Γ2u

x̂ft ⊗ ut+1

ut+1 ⊗ x̂ft
x̂st ⊗ ut+1

ut+1 ⊗ x̂st
x̂ft ⊗ x̂ft ⊗ ut+1

x̂ft ⊗ ut+1 ⊗ x̂ft
ut+1 ⊗ x̂ft ⊗ x̂ft
x̂ft ⊗ ut+1 ⊗ ut+1

ut+1 ⊗ x̂ft ⊗ ut+1

ut+1 ⊗ ut+1 ⊗ x̂ft
ut+1 ⊗ ut+1 ⊗ ut+1 − Γ3,u


7

with nξ = nu +n2
u + 2nxnu + 2nxnu + 3n2

xnu + 3nxn
2
u +n2

u elements. We are interested in product moments
M2,ξ := E(ξt ⊗ ξt), M3,ξ := E(ξt ⊗ ξt ⊗ ξt) and M4,ξ := E(ξt ⊗ ξt ⊗ ξt ⊗ ξt) with n2

ξ , n
3
ξ and n4

ξ elements,
respectively. In order to compute these objects efficiently, we first reduce the dimension of ξt, since it has
some duplicate elements. That is, we compute product-moments for the nξ̃ = nu +nu(nu + 1)/2 + 2nxnu +

n2
xnu + nxn

2
u + nu(nu + 1)(nu + 2)/6 vector

ξ̃t+1 :=



ut+1

DP+
nu(ut+1 ⊗ ut+1 − Γ2u)

x̂ft ⊗ ut+1

x̂st ⊗ ut+1

x̂ft ⊗ x̂ft ⊗ ut+1

x̂ft ⊗ ut+1 ⊗ ut+1

TP+
nu(ut+1 ⊗ ut+1 ⊗ ut+1 − Γ3,u)


given that

Fξ =



Iu 0 0 0 0 0 0
0 DPu 0 0 0 0 0
0 0 Ixu 0 0 0 0
0 0 Kux 0 0 0 0
0 0 0 Ixu 0 0 0
0 0 0 Kux 0 0 0
0 0 0 0 DPx ⊗ Iu 0 0
0 0 0 0 (Ix ⊗Kux)(DPx ⊗ Iu) 0 0
0 0 0 0 (Kux ⊗ Ix)(Ix ⊗Kux)(DPx ⊗ Iu) 0 0
0 0 0 0 0 (Ix ⊗DPu) 0
0 0 0 0 0 (Kux ⊗ Iu)(Ix ⊗DPu) 0
0 0 0 0 0 (Iu ⊗Kux)(Kux ⊗ Iu)(Ix ⊗DPu) 0
0 0 0 0 0 0 TPu


since

ξt = Fξ · ξ̃t

and with DP+
nu being the Moore-Penrose-Inverse of the duplication matrix DPnu , TP+

nu being the Moore-

Penrose-Inverse of the triplication matrix TPnu and Knx,nu the commutation matrix such that Knx,nu(xft ⊗
ut+1) = (ut+1 ⊗ xft). Then we have

Mk,ξ := [⊗kj=1Fξ] ·Mk,ξ̃

denoting the k-th (k=2,3,4)-order product moment of ξ̃t. Since [⊗kj=1Fξ] does not change with θ, we can

focus on Mk,ξ̃. Mk,ξ̃, however, contains also many duplicate elements. Denote with M̃k,ξ̃ the unique elements
of Mk,ξ̃, we have the following relationships:

M2,ξ̃ = DPnξ̃ · M̃2,ξ̃, M3,ξ̃ = TPnξ̃ · M̃3,ξ̃, M4,ξ̃ = QPnξ̃ · M̃4,ξ̃,

with the duplication matrix DPnξ̃ defined by Magnus & Neudecker (1999), and the triplication matrix

TPnξ̃ and quadruplication matrix QPnξ̃ similarly defined by Meijer (2005).2 Note that these matrices are

2Actually M̃k,ξ̃ has some further duplicate terms for nu, nx > 1 due to higher-order cross terms of ut+1 and xft , which we

can further reduce using indices from the unique function of Matlab.

8

independent of θ and their Moore-Penrose-Inverse always exists, e.g. (QP ′nξ̃QPnξ̃)
−1QP ′nξ̃ ·M4,ξ̃ = M̃4,ξ̃.

Further, DPnξ̃ , TPnξ̃ and QPnξ̃ are constructed such that there is a unique ordering in M̃k,ξ̃, see Meijer

(2005) for an example and more details.
The product-moments of ξ̃t can thus be computed symbolically as outlined in the second-order approxi-

mation.

References

Andreasen, M. M., Fernández-Villaverde, J., & Rubio-Ramı́rez, J. F. (2014). The Pruned State-Space System for Non-Linear
DSGE Models: Theory and Empirical Applications. Working Paper Aarhus University.

Kan, R. (2008). From moments of sum to moments of product. Journal of Multivariate Analysis, 99 , 542 – 554. doi:10.1016/
j.jmva.2007.01.013.

Kotz, S., & Nadarajah, S. (2004). Multivariate t-distributions and their applications.
Magnus, J., & Neudecker, H. (1999). Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley

Series in Probability and Statistics: Texts and References Section. Wiley.
Meijer, E. (2005). Matrix algebra for higher order moments. Linear Algebra and its Applications, 410 , 112 – 134. doi:10.1016/

j.laa.2005.02.040.
Roth, M. (2013). On the multivariate t distribution. Technical Report.

9

http://dx.doi.org/10.1016/j.jmva.2007.01.013
http://dx.doi.org/10.1016/j.jmva.2007.01.013
http://dx.doi.org/10.1016/j.laa.2005.02.040
http://dx.doi.org/10.1016/j.laa.2005.02.040

	Exact expressions for pruned state-space representation
	State-space system of first-order approximation
	State-space system of second-order approximation and pruning
	State-space system of third-order approximation and pruning

	Computation of product moments for extended innovations
	First-order approximation
	Second-order approximation
	Third-order approximation

