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1. Introduction 

Most macroeconomic time series do not follow the Gaussian distribution but are rather characterized by asymmetry and

thick tails. For instance, consumption price indices and interest rates can typically be described by skewed distributions,

whereas consumption exhibits excess kurtosis compared to a normal distribution. Furthermore, growth rates are seldom

Gaussian, a point emphasized by Fagiolo et al. (2008) . Current workhorse DSGE models are, however, linearized and one

assumes the normal distribution for the underlying stochastic innovations and structural shocks (e.g. Smets and Wouters,

2007 ). This typical approach is attractive, since the resulting state space representation is a linear Gaussian system. Us-

ing the Kalman filter one can then use either Maximum Likelihood (see e.g. Andreasen, 2010 ) or Bayesian (see e.g. An

and Schorfheide, 2007 ) methods to efficiently estimate these models in a full-information estimation strategy. In a limited-

information estimation strategy (General Method of Moments (GMM), Simulated Method of Moments (SMM) or Indirect

Inference, see e.g. Ruge-Murcia, 2007 ) estimation is focused on the first two moments of data, since a Gaussian process

is completely characterized by its mean and (co-)variance. This, however, cannot capture important features of macroeco-

nomic time series behavior. Ascari et al. (2015) show that simulated data from standard linearized DSGE models with either

Gaussian or Laplace distributed shocks fail to replicate asymmetry and thick tails one observes in real data. Accordingly,

Christiano (2007) finds strong evidence against the normality assumption based on the skewness and kurtosis properties

of residuals in an estimated VAR model. Implications of models that are not able to depict asymmetry and heavy tails in
� Replication files and an online appendix with additional expressions are available at https://www.mutschler.eu . 
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their data-generating-process are hence not reliable and should be used only with care for policy evaluation. DSGE models

should therefore not only replicate the first two moments of data, but also higher-order statistics such as skewness and

kurtosis. 

Basically, there are two complementary approaches to overcome this shortcoming. For one, we can discard the Gaussian-

ity assumption. Accordingly, Chib and Ramamurthy (2014) and Curdia et al. (2014) estimate standard linear DSGE models

with Student’s t -distributed shocks and conclude that these models outperform their Gaussian counterparts. On the other

hand, we can relax the linearity assumption and use a nonlinear solution to the DSGE model. In both cases it is natural to

analyze whether we are able to exploit information from higher-order moments for the calibration, estimation and identifi-

cation of parameters. Researchers in mathematics, statistics and signal processing have developed tools, called higher-order

statistics (HOS), to solve detection, estimation and identification problems when the noise source is non-Gaussian or we are

faced with nonlinearities; however, applications in the macroeconometric literature are rather sparse. Introductory literature

and tutorials on HOS can be found in the textbooks of Brillinger (2001) , Nikias and Petropulu (1993) , Priestley (1983) and

the references therein. The basic tools of HOS are cumulants, which are defined as the coefficients in the Taylor expansion

of the log characteristic function in the time-domain; and polyspectra, which are defined as Fourier transformations of the

cumulants in the frequency-domain. Cumulants and polyspectra are attractive for several reasons. For instance, all cumulants

and polyspectra of a Gaussian process of order three and above are zero, whereas the same applies only to odd product-

moments. Furthermore, the cumulant of two statistically independent random processes equals the sum of the cumulants

of the individual processes (which is not true for higher-order moments). And lastly, cumulants of a white noise sequence

are Kronecker delta functions, so that their polyspectra are flat ( Mendel, 1991 ). For a mathematical discussion of using cu-

mulants instead of moments in terms of ergodicity and proper functions, see Brillinger (1965) . Note that if two probability

distributions have the same moments, they will have the same cumulants as well. 

In this paper, we derive closed-form expressions for unconditional third- and fourth-order moments, cumulants and

corresponding polyspectra for non-Gaussian or nonlinear DSGE models. We limit ourselves to fourth-order statistics, since

third-order cumulants and the bispectrum capture nonlinearities (or non-Gaussianity) for a skewed process, whereas the

fourth-order cumulants and the trispectrum can be used in the case of a non-Gaussian symmetric probability distribution.

Regarding the approximation of the nonlinear solution to DSGE models we focus on the pruning scheme proposed by Kim

et al. (2008) and operationalized by Andreasen et al. (2016) , since the pruned state space (PSS from now on) is a linear,

stationary and ergodic state space system. In the PSS, however, Gaussian innovations do not imply Gaussian likelihood,

leaving scope for higher-order statistics to capture information from nonlinearities and non-Gaussianity. 

This paper is not the first to provide closed-form expressions for unconditional moments in higher-order approximated

and pruned solutions to DSGE models. Schmitt-Grohé and Uribe (2004) implicitly use pruning in their code to compute

unconditional first two moments for a second-order approximation. Likewise Lan and Meyer-Gohde (2013a ) provide methods

to compute unconditional first two moments based on Volterra series expansions. Closest to our approach (and which we

take as a starting point) is Andreasen et al. (2016) . They show how to set up the PSS for any order of approximation and

provide closed-form expressions and code to compute unconditional first two moments in the PSS. These three algorithms,

however, rely on the Gaussian distribution as the underlying shock process (not necessarily conceptually but at least in

the corresponding algorithms), whereas our symbolic script files can be used for any distribution provided the relevant

moments exist. We extensively tested our procedures with the ones in Andreasen et al. (2016) and found that when using

the Gaussian distribution and the same algorithm for Lyapunov equations the first two moments are identical. Our paper is,

however, the first to provide closed-form expressions and code for the computation of unconditional moments higher than

two as well as corresponding cumulants and polyspectra. 

Accordingly, we demonstrate our procedures by means of the Smets and Wouters (2007) model for a first-order ap-

proximation, the An and Schorfheide (2007) model for a second-order approximation and the canonical neoclassical growth

model, e.g. Schmitt-Grohé and Uribe (2004) , for a third-order approximation. For all models we consider both the Gaussian

as well as Student’s t -distribution with thick tails as the underlying shock process and compare our theoretical results with

simulated higher-order moments. We focus particularly on skewness and excess kurtosis in our simulations, since these are

typical measures an applied researcher would like to match in a calibration exercise. On the other hand auto- and cross-

(co-)skewness as well as kurtosis may contain valuable information in an estimation exercise, see e.g. Harvey and Siddique

(20 0 0) . Therefore, we illustrate our analytical expressions for higher-order statistics within a GMM estimation exercise. We

demonstrate the efficiency gain of including third-order product moments in the estimation of a Real Business Cycle (RBC)

model with habit formation and variable labor. 

The paper is structured as follows. Section 2 sets up the general DSGE framework and discusses linear as well as nonlin-

ear solution methods. The derivations of the PSS are given in Section 3 . A univariate example is used make the procedure

of pruning illustrative. In Section 4 , we provide formal definitions and establish notation regarding univariate and multivari-

ate cumulants and polyspectra. In this manner, we are able to derive closed-form expressions for unconditional moments,

cumulants and polyspectra up to order four for linear and nonlinear (pruned) solutions to DSGE models in Section 5 . The

accuracy and utility of the formulas for computing skewness and kurtosis are demonstrated in Section 6 . In the following

Section 7 , we illustrate the efficiency gain of including higher-order statistics within a GMM estimation. Section 8 concludes

and points out interesting applications for the proposed algorithm and results. Our DYNARE toolbox for the computation of

higher-order statistics and for the GMM estimation is model-independent and can be used for DSGE models solved up to a

third-order approximation. 
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2. DSGE framework and solution method 

The models under study belong to the family of discrete-time rational expectations models, which can be cast into a

system of nonlinear first-order expectational difference equations f . This model class encompasses competitive equilibria

and dynamic programing problems, as well as models with finitely many heterogeneous agents. Let E t be the expectation

operator conditional on information available at time t , then 

E t f ( x t+1 , y t+1 , u t+1 , x t , y t , u t ) = 0 (1) 

is called the general DSGE model with states x t , controls y t and exogenous shocks u t . This is basically a mixture of the

DYNARE framework (innovations enter nonlinearly, no distinction between states and controls) and the framework of

Schmitt-Grohé and Uribe (2004) (innovations enter linearly, distinction between states and controls). It can be shown that

both frameworks are equivalent, see Andreasen (2012) . For the sake of notation, it is assumed that all control variables are

observable. Furthermore, as mentioned in the introduction, we focus on moments and cumulants up to order four, therefore

we assume that the vector y t (t = 1 , . . . , T ) is stationary to at least order four. This assumption requires observables to have

finite and constant first, second, third and fourth moments, that only depend on the time difference but not on time itself.

This is basically an extension of the usual covariance stationarity assumption. See Priestley (1983 , p. 105) for a formal def-

inition of stationary up to order four, whereas the literature on ARCH( ∞ ) discusses some practical aspects of fourth-order

stationarity (see e.g. Teyssiére and Kirman, 2011 , Chapter 1 and the references therein). Accordingly, the vector of innova-

tions u t is at least n th-order white noise with finite and temporally uncorrelated higher moments, where n depends on

the order of approximation of the solution: the exogenous shocks are required to have at least finite fourth moments for a

first-order approximation, finite eighth moments for a second-order approximation and finite twelfth moments for a third-

order approximation. In other words, u t is at least a fourth-, eighth- or twelfth-order white noise process, such that our

assumption of y t being stationary of order four is fulfilled. Note that apart from the existence of moments and white noise

property no distributional assumptions are needed. 

Introducing an auxiliary parameter σ ≥ 0, called perturbation parameter, that scales the risk in the model, the solution

of such rational expectation models is characterized by a set of decision rules, g and h , called policy-functions , that solve (at

least approximately) the system of equations f : 

x t+1 = h (x t , u t+1 , σ ) , (2) 

and 

y t+1 = g(x t , u t+1 , σ ) . (3) 

In particular, σ = 1 corresponds to the stochastic model (1) and σ = 0 to the deterministic model where we drop the expec-

tational operator in (1) . Assuming existence and differentiability, the approximations of the policy functions are a straight-

forward application of Taylor series expansions around the nonstochastic steady state given by x̄ = h ( ̄x , 0 , 0) , ȳ = g( ̄x , 0 , 0)

and ū = 0 . Formal conditions for the existence and stability of the steady state are given in Galor (2007) . The third-order

Taylor approximation to the state equation (2) is: 

ˆ x t+1 = h x ̂  x t + h u u t+1 

+ 

1 

2 

H xx 

(
ˆ x t � ˆ x t 

)
+ H xu 

(
ˆ x t � u t+1 

)
+ 

1 

2 

H uu ( u t+1 � u t+1 ) + 

1 

2 

h σσ σ 2 

+ 

1 

6 

H xxx 

(
ˆ x t � ˆ x t � ˆ x t 

)
+ 

1 

6 

H uuu ( u t+1 � u t+1 � u t+1 ) 

+ 

3 

6 

H xxu 

(
ˆ x t � ˆ x t � u t+1 

)
+ 

3 

6 

H xuu 

(
ˆ x t � u t+1 � u t+1 

)
+ 

3 

6 

H xσσ σ 2 ˆ x t + 

3 

6 

H uσσ σ 2 u t+1 , (4) 

whereas the corresponding approximation of the control equation (3) reads: 

ˆ y t+1 = g x ̂  x t + g u u t+1 

+ 

1 

2 

G xx 

(
ˆ x t � ˆ x t 

)
+ G xu 

(
ˆ x t � u t+1 

)
+ 

1 

2 

G uu ( u t+1 � u t+1 ) + 

1 

2 

h σσ σ 2 

+ 

1 

6 

G xxx 

(
ˆ x t � ˆ x t � ˆ x t 

)
+ 

1 

6 

G uuu ( u t+1 � u t+1 � u t+1 ) 

+ 

3 

6 

G xxu 

(
ˆ x t � ˆ x t � u t+1 

)
+ 

3 

6 

G xuu 

(
ˆ x t � u t+1 � u t+1 

)
+ 

3 

6 

G xσσ σ 2 ˆ x t + 

3 

6 

G uσσ σ 2 u t+1 . (5) 

ˆ x t = x t − x̄ and ˆ y t = y t − ȳ denote deviations from steady state. h x , h u , g x and g u are the gradients of h and g with respect to

states and shocks. These matrices constitute the solution matrices of the first-order approximation. H xx is a n x × n 2 x matrix

containing all second-order terms for the i th state variable in the i th row, whereas G xx is a n y × n 2 x matrix containing all

second-order terms for the i th control variable in the i th row. H xu and G xu are accordingly shaped for the cross terms of

states and shocks, and H uu and G uu contain the second-order terms for the product of shocks. h σσ and g σσ are the Hessians

of h and g with respect to the perturbation parameter σ . The third-order matrices H xxx , H uuu , H xxu , H xuu , H x σσ , H u σσ and the
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corresponding matrices for the controls follow the same notation. In a second-order approximation these third-order terms

are zero. Note that all matrices are evaluated at the nonstochastic steady state. 

There are several methods and algorithms for calculating the first-order solution matrices based on linear quadratic

equations and Jordan/Schur decompositions, see Anderson (2008) for a comparison of algorithms, which are basically all

equivalent and differ only (slightly) in computational burden. Furthermore, all check the Blanchard and Kahn (1980) condi-

tions that are necessary in order to have a unique stable trajectory. The higher-order solution matrices can be calculated by

inserting the policy functions (2) and (3) into the model equations (1) and noting that the expression is known at the non-

stochastic steady state. Therefore, all derivatives of f must be 0 when evaluated at the nonstochastic steady state. Using the

implicit function theorem one can then derive systems of linear equations from which the second- and third-order solution

matrices are computed. 

Going beyond traditional first-order linearization methods is attractive for several reasons. For one, it offers a way to

model time-varying risk premia in models with stochastic volatility (e.g. Fernández-Villaverde et al., 2015 ) or rare disasters

(e.g. Andreasen, 2012 ). In these models, a third-order approximation is the lowest possible order to get any time variation

in returns and risk premia, since in a first-order approximation returns are not affected by the uncertainty σ in the model,

whereas in a second-order approximation σ only shifts returns. Furthermore, higher-order approximations are necessary

for welfare analysis, the canonical reference being Kim and Kim (2003) who show that a first-order approximation may

cause spurious welfare reversals. Lastly, higher-order approximations may also provide additional restrictions to enhance

parameter identifiability as shown by An and Schorfheide (2007) , Mutschler (2015) or van Binsbergen et al. (2012) . 

Perturbation methods have gained much popularity, particularly for models with many state variables, due to their low

computational expense and clear structure based on the implicit function theorem. However, the assumption of differentia-

bility is hard to verify in practice. Moreover, the solution is inherently local and only valid in the proximity of the steady

state. Therefore, perturbation methods have their shortcomings in models with complex structures such as occasionally

binding constraints, regime switching, multiple equilibria, and large shocks. Even though the literature evolves to apply per-

turbation methods in these contexts – occasionally binding constraints are tackled by Guerrieri and Iacoviello (2015) , regime

switching by Maih (2015) and multiple equilibria by Lubik and Schorfheide (2004) – global solution methods remain a more

accurate and powerful way to compute the solution in these environments. Fernández-Villaverde et al. (2016) review pro-

jection methods, whereas value and policy function iteration are discussed in Cai and Judd (2014) and Rust (1996) . Global

solution methods suffer from the curse of dimensionality, i.e. the computational complexity rises rapidly in the number

of state variables. For instance, constructing the grid can be very cumbersome and time-consuming in models with many

variables, even though Grüne et al. (2015) or Maliar and Maliar (2015) have recently provided algorithms to improve on

this issue. A good computational reference for projection, value and policy function iteration, Smolyak, endogeneous grid

and envelope condition methods is Maliar and Maliar (2014) . Also hybrid approaches (e.g. combining projection and per-

turbation methods as in Maliar et al., 2013 ) seem promising to reduce the curse of dimensionality. In a nutshell, there is

a trade-off between speed and accuracy. Perturbation methods are fast and easy to implement, yet only locally accurate,

whereas global solution methods are slow and harder to implement, yet provide a globally accurate solution. Nevertheless,

perturbation remains the workhorse solution method and will be used in the rest of the paper. Note that the perturbation

solution is also an excellent initial guess for global solution algorithms. 

3. Pruning 

Various simulation studies show, that Taylor approximations of an order higher than one may generate explosive time

paths, even though the first-order approximation is stable. These explosive paths arise because the higher-order terms in-

duce additional fixed points, around which the approximated solution is unstable. Consider for illustration the univariate

example of Kim et al. (2008 , p. 3408) with one state variable and one shock. Suppose the simplified second-order approxi-

mation around the steady state x̄ = 0 is given by 

x t+1 = h x x t + H xx x 
2 
t + h u u t+1 , (6)

where it is assumed that | h x | < 1, h u > 0 and H xx > 0. Note that in (6) there are two fixed points: the steady state x = 0

and another (artificial) one at x = (1 − h x ) /H xx . If a (large) shock sets x t above the latter fixed point, the system will tend to

diverge. “This is likely to be a generic problem with quadratic expansions – they will have extra steady states not present in the

original model, and some of these steady states are likely to mark transitions to unstable behavior” ( Kim et al., 2008 , p. 3408).

Thus, the model may be neither stationary nor imply an ergodic probability distribution, both of which assumptions are

essential for calibration, estimation and identification. To circumvent this explosiveness Samuelson (1970) and Jin and Judd

(2002) assume a bounded support for u t . Another approach is to use the pruning scheme, in which one omits terms from

the policy functions that have higher-order effects than the approximation order. In our example, we (artificially) decompose

the state vector into first- and second-order effects ( x t = x 
f 
t+1 

+ x s 
t+1 

), then (6) becomes 

x f 
t+1 

+ x s t+1 = h x x 
f 
t + h x x 

s 
t + H xx (x f t ) 

2 + 2 H xx x 
f 
t x 

s 
t + H xx (x s t ) 

2 + h u u t+1 . (7)

The idea of pruning is to set up the law of motions for x 
f 
t containing only effects up to first order and for x s t containing

only effects up to second-order. In other words, we prune terms in (7) that contain x 
f 
x s (a third-order effect) and (x s ) 2
t t t 
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(a fourth-order effect), whereas there are no higher-order effects in u t+1 . The pruned solution x 
f 
t+1 

= h x x 
f 
t + h u u t+1 and

x s 
t+1 

= h x x 
s 
t + H xx (x 

f 
t ) 

2 can then be rewritten as a linear state space system: ⎛ ⎝ 

x f 
t+1 

x s t+1 

x f 
2 

t+1 

⎞ ⎠ 

︸ ︷︷ ︸ 
z t+1 

= 

( 

h x 0 0 

0 h x H xx 

0 0 h 

2 
x 

) 

︸ ︷︷ ︸ 
A 

⎛ ⎝ 

x f t 

x s t 

x f 
2 

t 

⎞ ⎠ 

︸ ︷︷ ︸ 
z t 

+ 

( 

h u 0 0 

0 0 0 

0 2 h x h u h 

2 
u 

) 

︸ ︷︷ ︸ 
B 

⎛ ⎝ 

u t+1 

x f t u t+1 

u 

2 
t+1 − σ 2 

u 

⎞ ⎠ 

︸ ︷︷ ︸ 
ξt+1 

+ 

( 

0 

0 

h 

2 
u σ

2 
u 

) 

︸ ︷︷ ︸ 
c 

, 

with an extended state vector z t and an extended vector of shocks ξ t , where we add and subtract the variance σ 2 
u of u t 

to get E(ξt ) = 0 . Note that, even if u t is Gaussian, ξ t is clearly not normally distributed. Pruning ensures stability, since

| h x | < 1. The solution used, however, is no longer a policy function of the original state variables. This may seem an ad-hoc

procedure, but it can also be theoretically founded as a valid Taylor expansion in the perturbation parameter ( Lombardo and

Uhlig, 2014 ) or on an infinite moving average representation ( Lan and Meyer-Gohde, 2013b ). 

The example generalizes to the multivariate case. That is, for a third-order approximation, we decompose the state vector

into first-order ( ̂  x 
f 
t ) , second-order ( ̂  x s t ) and third-order ( ̂  x rd 

t ) effects, ( ̂  x t = ˆ x 
f 
t + ̂  x s t + ̂  x rd 

t ) , and set up the law of motions

for these variables, preserving only effects up to first-, second, and third-order respectively (see the technical appendix of

Andreasen et al., 2016 for more details): 

ˆ x f 
t+1 

= h x ̂  x f t + h u u t+1 , (8) 

ˆ x s t+1 = h x ̂  x s t + 

1 

2 

[
H xx 

(
ˆ x f t � ˆ x f t 

)
+ 2 H xu 

(
ˆ x f t � u t+1 

)
+ H uu ( u t+1 � u t+1 ) + h σσ σ 2 

]
, (9) 

and 

ˆ x rd 
t+1 = h x ̂  x rd 

t + H xx 

(
ˆ x f t � ˆ x s t 

)
+ H xu 

(
ˆ x s t � u t+1 

)
+ 

3 

6 

H xσσ σ 2 ˆ x f t + 

3 

6 

H uσσ σ 2 u t+1 

+ 

1 

6 

H xxx 

(
ˆ x f t � ˆ x f t � ˆ x f t 

)
+ 

1 

6 

H uuu ( u t+1 � u t+1 � u t+1 ) 

+ 

3 

6 

H xxu 

(
ˆ x f t � ˆ x f t � u t+1 

)
+ 

3 

6 

H xuu 

(
ˆ x f t � u t+1 � u t+1 

)
. (10) 

The law of motions for the controls can be derived analogously (see the online appendix). 

Proposition 1 (Pruned state space) . Given an extended state vector z t and an extended vector of innovations ξ t , the pruned

solution to a DSGE model can be rewritten as a linear time-invariant zero mean state space system with law of motions ˜ z t+1 = A ̃

 z t + Bξt+1 , (11) 

and ˜ y t+1 = C ̃  z t + Dξt+1 , (12) 

where a tilde denotes deviations from the unconditional mean: ˜ z t := z t − E(z t ) with E(z t ) = (I n z − A ) −1 c and ˜ y t := y t − E(y t )

with E(y t ) = ȳ + C · E(z t ) + d. 

Proof. See Andreasen et al. (2016) . The online appendix contains the exact expressions for A , B , C , D , c and d in a first-, second-

and third-order approximation. �

It is easy to show that the stability of the system is govern by the first-order approximation, i.e. if all Eigenvalues of h x 
have modulus less than one, the pruned state space is then also stable. In other words, all higher-order terms are unique

and all Eigenvalues of A have also modulus less than one. Furthermore, ξ t is zero mean white noise with finite moments.

As shown in the univariate example, in higher-order approximations ξ t is non-Gaussian, even if the underlying process u t 
is normally distributed, therefore leaving scope for higher-order statistics to contain additional information for calibration,

estimation and identification. 

4. Cumulants and polyspectra 

We will now provide the formal definition and our notation regarding cumulants and polyspectra. First, note that the

joint product moments of n real random variables x 1 , . . . , x n of order k = k 1 + k 2 + · · · + k n are defined as (see Nikias and

Petropulu, 1993 , Chapter 2): 

E 
[
x k 1 

1 
· x k 2 

2 
· . . . · x k n n 

]
= (−i ) k 

∂ k �( ω 1 , ω 2 , . . . , ω n ) 

∂ω 

k 1 ω 

k 2 . . . ω 

k n 
n 

∣∣∣
ω 1 = ω 2 = ···= ω n =0 

, 
1 2 
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where 

�( ω 1 , ω 2 , . . . , ω n ) ≡ E [ exp{ i ( ω 1 x 1 + ω 2 x 2 + · · · + ω n x n ) } ] (13)

is their joint characteristic function and i the imaginary unit. The joint cumulants of the same set of random variables

of order k , Cum [ x 
k 1 
1 

, x 
k 2 
2 

, . . . , x k n n ] , are defined as the coefficients in the Taylor expansion of the natural log of (13) (see e.g.

Brillinger, 1965 ): 

Cum 

[
x k 1 

1 
, x k 2 

2 
, . . . , x k n n 

]
= (−i ) k 

∂ k ln { �( ω 1 , ω 2 , . . . , ω n ) } 
∂ω 

k 1 
1 
ω 

k 2 
2 

. . . ω 

k n 
n 

∣∣∣
ω 1 = ω 2 = ···= ω n =0 

. 

Obviously, there is an intimate relationship between moments and cumulants: if two probability distributions have identical

moments, they will have identical cumulants as well. Therefore, cumulants can be expressed by moments and vice versa,

for instance: 

C 1 ,x 1 ≡ Cum [ x 1 ] = E[ x 1 ] , 

C 2 ,x 1 ≡ Cum [ x 1 , x 1 ] = E[ x 2 1 ] − E[ x 1 ] 
2 , 

C 3 ,x 1 ≡ Cum [ x 1 , x 1 , x 1 ] = E[ x 3 1 ] − 3 E[ x 2 1 ] E[ x 1 ] + 2 E[ x 1 ] 
3 , 

and 

C 4 ,x 1 ≡ Cum [ x 1 , x 1 , x 1 , x 1 ] = E[ x 4 1 ] − 4 E[ x 3 1 ] E[ x 1 ] − 3 E[ x 2 1 ] 
2 + 12 E[ x 2 1 ] E[ x 1 ] 

2 − 6 E[ x 1 ] 
4 . 

Assuming mean zero variables, this simplifies to C 1 ,x 1 = 0 , C 2 ,x 1 = E[ x 2 
1 
] , C 3 ,x 1 = E[ x 3 

1 
] and C 4 ,x 1 = E[ x 4 

1 
] − 3 E[ x 2 

1 
] 2 . We note

that for symmetric probability distributions all odd moments and cumulants are identical to zero, whereas for the Gaussian

case all cumulants of order greater than two are also zero. 

In the multivariate case, we adopt the compact notation of Swami and Mendel (1990) and store all product-moments of a

mean zero vector-valued process in a vector using Kronecker products. For example, the second moments (and cumulants) of
 z t can either be stored in a n z × n z matrix E( ̃  z t ·˜ z ′ t ) =: �z or in the n 2 z × 1 vector E( ̃  z t �˜ z t ) = v ec(�z ) ; this notion naturally

carries over to higher orders. Formally, the k th-order ( k = 2,3,4) cumulants of the k th-order stationary, mean zero vector

process ̃  z t ( t 1 , t 2 , t 3 ≥ 0) are given by the n k z vectors C k,z as 

C 2 ,z (t 1 ) := E[ ̃  z 0 �˜ z t 1 ] , 

C 3 ,z (t 1 , t 2 ) := E[ ̃  z 0 �˜ z t 1 �˜ z t 2 ] , 

and 

C 4 ,z (t 1 , t 2 , t 3 ) := E[ ̃  z 0 �˜ z t 1 �˜ z t 2 �˜ z t 3 ] − C 2 ,z (t 1 ) � C 2 ,z (t 2 − t 3 ) 

− P ′ n z ( C 2 ,z (t 2 ) � C 2 ,z (t 3 − t 1 ) ) − P n z ( C 2 ,z (t 3 ) � C 2 ,z (t 1 − t 2 ) ) , 

where P n z = I n z � U 

n 2 z ×n z 
and U 

n 2 z ×n z 
is a (n 3 z × n 3 z ) permutation matrix with unity entries in elements [(i − 1) n z + j, ( j −

1) n 2 z ] , i = 1 , . . . , n 2 z and j = 1 , . . . , n z , and zeros else. That is, the second cumulant is equal to the autocovariance matrix and

the third cumulant to the autocoskewness matrix. The fourth-order cumulant, however, is the fourth-order product-moment

(autocokurtosis matrix) less permutations of second-order moments. In general, for cumulants higher than three, we need

to know the lower-order moments or cumulants. 

Assuming that C k,z (t 1 , . . . , t k −1 ) is absolutely summable, the k th-order polyspectrum S k,z is defined as the (k − 1) -

dimensional Fourier transform of the k th-order cumulant 

S k,z (ω 1 , . . . , ω k −1 ) := 

1 

(2 π) k −1 

∞ ∑ 

t 1 = −∞ 

· · ·
∞ ∑ 

t k −1 = −∞ 

C k,z (t 1 , . . . , t k −1 ) · exp 

{ 

−i 

k −1 ∑ 

j=1 

ω j t j 

} 

, 

with ω j ∈ [ −π ;π ] and imaginary i (see Swami et al., 1994 for further details). The second-, third- and fourth-order spectra

are called the power spectrum, bispectrum and trispectrum, respectively. The power spectrum corresponds to the well-

studied spectral density, which is a decomposition of the autocorrelation structure of the underlying process (Wiener–

Khinchin theorem). The bispectrum can be viewed as a decomposition of the third moments (auto- and cross-skewness)

over frequency and is useful for considering systems with asymmetric nonlinearities. In studying symmetric nonlinearities,

the trispectrum is a more powerful tool, as it represents a decomposition of (auto- and cross-) kurtosis over frequency. Fur-

thermore, both the bi- and trispectrum will be equal to zero for a Gaussian process, such that departures from Gaussianity

will be reflected in these higher-order spectra. 

5. Higher-order statistics for the pruned state space system 

Reconsider the PSS in Proposition 1 . Note that this system is a zero mean linear time-invariant state space system.

Standard results from VAR(1) systems and insights from HOS can be used, regarding the computation of unconditional



50 W. Mutschler / Econometrics and Statistics 6 (2018) 44–56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cumulants and polyspectra of states, controls and stochastic innovations. The k th-order cumulants of ξ t are 

C k,ξ (t 1 , . . . , t k −1 ) = 

{
	k,ξ if t 1 = · · · = t k −1 = 0 , 

0 otherwise , 

and corresponding polyspectra S k,ξ (ω 1 , . . . , ω k −1 ) = (2 π) 1 −k 	k,ξ are flat. We compute 	k , ξ using symbolic expressions and

script files, which are independent of the distribution of u t . A description of the algorithm is given in the online ap-

pendix. We make use of the fact, that 	k , ξ can be partitioned into several submatrices which can be computed symbolically

element-by-element, but contain many duplicate entries. For instance, note that E [ ξ t �ξ t �ξ t ] is of dimension n 3 
ξ
, but the

number of distinct elements is n ξ (n ξ + 1)(n ξ + 2) / 6 , because ξi,t ξ j,t ξk,t = ξ j,t ξi,t ξk,t = ξi,t ξk,t ξ j,t and so forth. We can use

special matrix algebra analogous to the duplication matrix, called triplication and quadruplication matrix ( Meijer, 2005 ),

to ease the computations for higher-order product-moments of ξ t , where we remove each second and later occurrence of

the same element. Letting [ �k 
j=1 

X( j)] = X(1) � X(2) � · · · � X(k ) for objects X ( j ), Swami and Mendel (1990) show that the

cumulants of the state vector ̃  z t , 

C k,z (t 1 , . . . , t k −1 ) = [ �k −1 
j=0 

A 

t j ] · C k,z (0 , . . . , 0) , 

are given in terms of their zero-lag cumulants, 

C k,z (0 , . . . , 0) = (I n k z 
− [ �k 

j=1 A ]) −1 · [ �k 
j=1 B ] · 	k,ξ , 

which can be computed efficiently using iterative algorithms for generalized Sylvester equations (see Appendix A ). Further-

more, there is considerable symmetry by using appropriate permutation matrices; in particular, all second-order cumulants

can be computed from t 1 > 0, all third-order cumulants from t 1 ≥ t 2 > 0 and all fourth-order cumulants from t 1 ≥ t 2 ≥ t 3 
> 0. Since there is a linear relationship between ̃

 y t and ̃

 z t−1 in Eq. (12) , we obtain closed-form expressions for the k th-order

cumulants of control variables. That is, for t j > 0 

C k,y (0 , . . . , 0) = [ �k 
j=1 C] C k,z (0 , . . . , 0) + [ �k 

j=1 D ]	k,ξ , 

and 

C k,y (t 1 , . . . , t k −1 ) = [ �k 
j=1 C] C k,z (t 1 , . . . , t k −1 ) . 

Regarding the computation of polyspectra, consider the vector moving average representation (VMA) of ̃  z t = 

∑ ∞ 

j=0 A 

j Bξt− j .

Using Eq. (12) and lag operator L , we obtain the VMA for our controls: 

˜ y t = 

∞ ∑ 

j=0 

CA 

j Bξt− j−1 + Dξt = H ξ (L −1 ) ξt , 

with transfer function H ξ (z ) = D + C ( z I n z − A ) −1 B for z ∈ C . Setting z j = e −iω j , with imaginary i and ω j ∈ [ −π ;π ] , we obtain

the Fourier transformations of the cumulants of ̃  y t , i.e. the power spectrum: 

S 2 ,y (ω 1 ) = (2 π) −1 
[
H(z −1 

1 ) � H(z 1 ) 
]
	2 ,ξ , 

the bispectrum: 

S 3 ,y (ω 1 , ω 2 ) = (2 π) −2 
[
H(z −1 

1 · z −1 
2 ) � H(z 1 ) � H(z 2 ) 

]
	3 ,ξ , 

and the trispectrum: 

S 4 ,y (ω 1 , ω 2 , ω 3 ) = (2 π) −3 
[
H(z −1 

1 · z −1 
2 · z −1 

3 ) � H (z 1 ) � H (z 2 ) � H (z 3 ) 
]
	4 ,ξ . 

Again, there is considerable symmetry easing the computations. To approximate the interval [ −π ;π ] , we divide it into N

subintervals to obtain N + 1 frequency indices with ω s denoting the s th frequency in the partition. The bispectrum can

be computed from s 1 ≤ s 2 and the trispectrum from s 1 ≤ s 2 ≤ s 3 ( s j = 1,..., N + 1 ; j = 1 , 2 , 3 ), since these determine all

other spectra through permutations. The computations of the bispectrum can be accelerated further by noting that the sum

ω s 1 + ω s 2 contains many duplicate elements, since ω s j ∈ [ −π ;π ] . Thus, one does not need to do the computations for all

N(N + 1) / 2 runs, but rather for a much smaller set. Similarly, there is no need to evaluate all N(N + 1)(N + 2) / 6 possible

values of ω s 1 + ω s 2 + ω s 3 for the trispectrum but only the unique values. See Chandran and Elgar (1994) for a thorough

discussion of principal domains of polyspectra. 

6. Monte Carlo analysis 

In this section we demonstrate the formulas by a Monte Carlo analysis using three well-known DSGE models: Smets

and Wouters (2007) for a first-order approximation (see Table 1 ), An and Schorfheide (2007) for a second-order approxima-

tion (see Table 2 ) and the neoclassical growth model as in Schmitt-Grohé and Uribe (2004) for a third-order approximation

(see Table 3 ). It is well known that when simulating higher-order moments one requires a large sample size and/or many

simulation runs, since one deals with outliers taken to the powers of three and above. Bai and Ng (2005) derive sampling
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Table 1 

Smets and Wouters (2007) : first-order state space system. 

Shocks Variance Skewness Excess kurtosis 

Gaussian Student’s t Gaussian Student’s t Gaussian Student’s t 

(T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) 

ea 0.213 0 . 213 
(0 . 0 0 0) 

0.355 0 . 355 
(0 . 0 0 0) 

0 0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 001 
(0 . 066) 

6 5 . 310 
(10 . 01) 

eb 3.427 3 . 427 
(0 . 0 0 0) 

5.712 5 . 712 
(0 . 0 0 0) 

0 0 . 0 0 0 
(0 . 0 0 0) 

0 0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 001 
(0 . 063) 

6 4 . 773 
(4 . 865) 

eg 0.371 0 . 371 
(0 . 0 0 0) 

0.618 0 . 618 
(0 . 0 0 0) 

0 0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 001 
(0 . 068) 

6 4 . 696 
(4 . 468) 

eqs 0.362 0 . 362 
(0 . 0 0 0) 

0.603 0 . 603 
(0 . 0 0 0) 

0 −0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 004 
(0 . 063) 

6 5 . 160 
(7 . 250) 

em 0.057 0 . 057 
(0 . 0 0 0) 

0.096 0 . 096 
(0 . 0 0 0) 

0 −0 . 0 0 0 
(0 . 0 0 0) 

0 0 . 0 0 0 
(0 . 0 0 0) 

0 0 . 001 
(0 . 069) 

6 4 . 938 
(6 . 300) 

epinf 0.021 0 . 021 
(0 . 0 0 0) 

0.035 0 . 035 
(0 . 0 0 0) 

0 0 . 0 0 0 
(0 . 0 0 0) 

0 0 . 0 0 0 
(0 . 0 0 0) 

0 0 . 0 0 0 
(0 . 067) 

6 4 . 897 
(5 . 231) 

ew 0.044 0 . 044 
(0 . 0 0 0) 

0.073 0 . 073 
(0 . 0 0 0) 

0 0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 0 0 0 
(0 . 0 0 0) 

0 0 . 001 
(0 . 065) 

6 5 . 715 
(27 . 31) 

Observables (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) 

labobs 159.4 159 . 4 
(8 . 317) 

265.7 265 . 4 
(14 . 10) 

0 0 . 001 
(0 . 017) 

0 −0 . 001 
(0 . 031) 

0 −0 . 007 
(0 . 142) 

0.762 0 . 606 
(0 . 814) 

robs 17.41 17 . 42 
(0 . 773) 

29.02 28 . 99 
(1 . 307) 

0 0 . 001 
(0 . 016) 

0 0 . 0 0 0 
(0 . 036) 

0 −0 . 005 
(0 . 128) 

0.926 0 . 736 
(0 . 875) 

pinfobs 3.031 3 . 030 
(0 . 164) 

5.052 5 . 050 
(0 . 281) 

0 0 . 001 
(0 . 018) 

0 0 . 0 0 0 
(0 . 034) 

0 −0 . 007 
(0 . 152) 

0.648 0 . 525 
(0 . 773) 

dy 47.88 47 . 90 
(0 . 643) 

79.81 79 . 82 
(1 . 266) 

0 −0 . 0 0 0 
(0 . 008) 

0 −0 . 001 
(0 . 048) 

0 0 . 001 
(0 . 068) 

3.992 3 . 156 
(3 . 649) 

dc 55.93 55 . 95 
(0 . 693) 

93.22 93 . 26 
(1 . 324) 

0 −0 . 0 0 0 
(0 . 008) 

0 −0 . 0 0 0 
(0 . 051) 

0 0 . 001 
(0 . 068) 

4.061 3 . 225 
(3 . 275) 

dinve 50.93 50 . 95 
(0 . 951) 

84.88 84 . 95 
(2 . 037) 

0 −0 . 0 0 0 
(0 . 008) 

0 −0 . 001 
(0 . 054) 

0 0 . 001 
(0 . 070) 

3.589 2 . 984 
(4 . 754) 

dw 0.586 0 . 588 
(0 . 012) 

0.979 0 . 979 
(0 . 023) 

0 0 . 0 0 0 
(0 . 008) 

0 0 . 002 
(0 . 125) 

0 0 . 004 
(0 . 071) 

3.109 2 . 580 
(4 . 740) 

Theoretical (T) and simulated (S) statistics for stochastic innovations and observables. Simulations with 10 0 0 replications with 

10 0 0 0 data points each (after discarding 10 0 0 points) and using antithetic shocks. Standard deviations of Monte Carlo statistics 

are in parentheses. Runtime for theoretical statistics is 0.8 s and for simulated statistics 170 s on a standard desktop machine. 

Table 2 

An and Schorfheide (2007) : second-order pruned state space system. 

Shocks Variance Skewness Excess kurtosis 

Gaussian Student’s t Gaussian Student’s t Gaussian Student’s t 

(T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) 

eR 9e −6 9e −6 
(0 . 0 0 0) 

1.2e −5 1.2e −5 
(0 . 0 0 0) 

0 0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 002 
(0 . 069) 

1.2 1 . 184 
(0 . 390) 

eg 3.6e −5 3.6e −5 
(0 . 0 0 0) 

4.6e −5 4.6e −5 
(0 . 0 0 0) 

0 0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 001 
(0 . 064) 

1.2 1 . 186 
(0 . 377) 

ez 4e −6 4e −6 
(0 . 0 0 0) 

5e −6 5e −6 
(0 . 0 0 0) 

0 0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 0 0 0 
(0 . 0 0 0) 

0 0 . 004 
(0 . 065) 

1.2 1 . 173 
(0 . 338) 

Observables (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) 

YGR 1.252 1 . 252 
(0 . 030) 

1.632 1 . 634 
(0 . 043) 

0.157 0 . 293 
(0 . 017) 

0.305 0 . 452 
(0 . 059) 

0.143 0 . 188 
(0 . 084) 

1.335 1 . 394 
(0 . 772) 

INFL 7.728 7 . 727 
(0 . 300) 

9.940 9 . 953 
(0 . 384) 

0.029 0 . 102 
(0 . 014) 

0.053 0 . 135 
(0 . 020) 

0.006 0 . 015 
(0 . 096) 

0.346 0 . 357 
(0 . 204) 

INT 10.71 10 . 71 
(0 . 671) 

13.77 13 . 81 
(0 . 890) 

0.010 0 . 083 
(0 . 024) 

0.019 0 . 101 
(0 . 028) 

0.001 0 . 006 
(0 . 170) 

0.097 0 . 091 
(0 . 199) 

Theoretical (T) and simulated (S) statistics for stochastic innovations and observables. Simulations with 10 0 0 replications with 10 0 0 0 data 

points each (after discarding 10 0 0 points) and using antithetic shocks. Standard deviations of Monte Carlo statistics are in parentheses. Run- 

time for theoretical statistics is 4.1 s and for simulated statistics 1054 s on a standard desktop machine. 

Table 3 

Neoclassical growth model: third-order pruned state space system. 

Variance Skewness Excess kurtosis 

Gaussian Student’s t Gaussian Student’s t Gaussian Student’s t 

(T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) 

ea 1 1 . 0 0 0 
(0 . 0 0 0) 

1.182 1 . 182 
(0 . 0 0 0) 

0 −0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 0 0 0 
(0 . 0 0 0) 

0 −0 . 0 0 0 
(0 . 064) 

0.667 0 . 660 
(0 . 183) 

c 0.710 0 . 704 
(0 . 012) 

0.843 0 . 843 
(0 . 014) 

0 −0 . 116 
(0 . 012) 

−0 .235 −0 . 189 
(0 . 025) 

0.057 0 . 020 
(0 . 074) 

0.608 0 . 547 
(0 . 207) 

Theoretical (T) and simulated (S) statistics for stochastic innovation ea and observable c. Simulations with 10 0 0 replications with 

10 0 0 0 data points each (after discarding 10 0 0 points) and using antithetic shocks. Standard deviations of Monte Carlo statistics 

are in parentheses. Runtime for theoretical statistics is 0.5 s and for simulated statistics 1683 s on a standard desktop machine. 
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distributions for the coefficients of skewness and kurtosis for serially correlated data. They assume stationarity up to eighth

order and show in a simulation exercise of an AR(1) process that test statistics for skewness have acceptable finite sample

size and power, whereas for kurtosis the size distortions are tremendous. Bao (2013) provides some further results on finite

sample biases. Therefore, for each model, we simulate 10 0 0 trajectories of the PSS with 10 0 0 0 data points each (after dis-

carding 10 0 0 points) and using antithetic shocks to reduce the Monte Carlo sampling variation (all settings can be adjusted

in the DYNARE toolbox). We use the original parameterization of the models, however, we impose both the Gaussian as well

as Student’s t -distribution as the underlying shock processes. For the Smets and Wouters (2007) model we set the degrees

of freedom equal to 5, for the An and Schorfheide (2007) model to 9 and for the neoclassical growth model to 15, since

these are the lowest numbers for which our assumption of 4th order stationarity is fulfilled. We then compute the sample

variance, skewness and excess kurtosis of the stochastic innovations and observables of each trajectory and average over all

Monte Carlo runs. Note that the second-order zero-lag cumulant of y t is equal to the covariance matrix. Skewness can either

be computed via standardized product moments or via the ratio of the third zero-lag cumulant and the 1.5th power of the

second zero-lag cumulant. Furthermore, excess kurtosis is the fourth zero-lag cumulant normalized by the square of the

second-order cumulant. Lastly, we compare these to their theoretical counterparts using the formulas derived in Section 5 .

We also report standard deviations of the statistics in the simulation and running times. Tables 1 –3 summarize the results.

For a first-order approximation the empirical variance, skewness and excess kurtosis are very close to their theoretical val-

ues no matter which distribution is imposed on the shocks. However, for the thick tailed Student’s t -distribution with 5

degrees of freedom, we see large standard errors. In higher-order approximations the discrepancies in skewness and in par-

ticular excess kurtosis are even more evident: matching higher-order moments in simulation studies is hard. This is already

evident in the statistics of the underlying stochastic innovations which are directly drawn from a random number generator

(even though their variation is already reduced by antithetic shocks and quadratic resampling). We therefore would need to

increase the sample size or redo the exercise with more replications. However, increasing the number of Monte Carlo runs

as well as sample size would on the one hand increase the precision but on the other hand also the computational time

as can be seen by the execution times in the tables. This is unfeasible for an applied researcher who uses a try-and-error

approach to match third-order or fourth-order characteristics of a variable in a calibration exercise. Hence, we conclude that

our expressions are a convenient and fast way to compute higher-order statistics for linear and nonlinear (pruned) solutions

to DSGE models. 

7. GMM estimation with higher-order statistics 

GMM is arguably the most convenient and general way of estimation of an economic model that can be equally applied

in a variety of frameworks. We take Andreasen et al. (2016) ’s approach to use the pruned state space representation for a

GMM estimation and extend it to include third- and fourth-order product moments as additional instruments. We follow

Ruge-Murcia (2013) in the exposition of the GMM estimator, i.e. we are concerned with the set of p moment conditions: 

M(θ ) = 

( 

1 

T 

T ∑ 

t=1 

m (y t ) − E [ m (θ ) ] 

) 

, (14) 

where { y t } denotes a sample of T observations of data. 1 
T m (y t ) are statistics computed using the time average of some

functions of the data, while E [ m ( θ )] is the theoretical counterpart of the same statistics predicted by the economic

model. In particular, we estimate DSGE models solved up to third order by using the following unconditional moments:

(1) sample means, i.e. m 1 ( y t ) = y t , (2) contemporaneous covariances, i.e. m 2 ( y t ) = v ech 
(
y t y 

′ 
t 

)
, (3) own auto-covariances,

i.e. m 3 ( y t ) = 

{
y i,t y i,t− j 

}n y 

i =1 
for various values of j , (4) own third-order product moments, i.e. m 4 ( y t ) = 

{
y i,t y i,t y i,t 

}n y 

i =1 
, and

(5) own fourth-order product moments, i.e. m 5 ( y t ) = 

{
y i,t y i,t y i,t y i,t 

}n y 

i =1 
. Computationally, we extend (and adapt to DYNARE)

the GMM toolbox of Andreasen et al. (2016) to include information from third- and fourth-order statistics as well as the

possibility to use the multivariate Student’s t -distribution as the underlying shock process. Note that we compute product

moments from the cumulants derived in Section 5 . Hence, the total set of moments used in the estimation is given by: 

m ( y t ) ≡
(
m 1 ( y t ) 

′ 
, m 2 ( y t ) 

′ 
, m 3 ( y t ) 

′ 
, m 4 ( y t ) 

′ 
, m 5 ( y t ) 

′ )′ 
. 

The GMM estimator is defined as ˆ θ = arg min θ M (θ ) ′ W M (θ ) . Intuitively, one tries to find the estimate that matches the

empirical analogous of the moment conditions as close as possible, where the p × p positive-definite weighting matrix W

defines what close means. If p < n θ the model is under-identified and we need to find additional instruments for the esti-

mation. If p = n θ , then the model is exactly-identified: the weight-matrix does not play any role, since there is a unique so-

lution to the quadratic form. If p > n θ , then the model is over-identified. The weight-matrix picks those moment-conditions

that lead to a more precise estimation. Hansen (1982) shows, that the optimal weight matrix is given by the inverse of the

covariance-matrix of the empirical counterpart of the moment conditions. Note, however, that p ≥ n θ is only a necessary

condition for identification. A sufficient condition for local identification requires that the rank of D ≡ ∂E(m (θ )) 
∂θ ′ is equal to

n θ . Formal criteria for checking the full rank assumption of the expected Jacobian are provided by Iskrev (2010) , Komunjer

and Ng (2011) or Qu and Tkachenko (2012) for a first-order approximation and by Mutschler (2015) for higher-order ap-

proximations. Given the regularity conditions in Hansen (1982) one can show that the GMM estimator is consistent and
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Table 4 

Bias and standard deviation given sample size T = 250 . 

GMM2 GMM3 

Standard error Standard error 

Parameter Bias Asymptotic Monte Carlo Bias Asymptotic Monte Carlo 

δ −0 .001302 0.002759 0.005162 −0 .001481 0.002310 0.004753 

β 0 .001014 0.002918 0.005068 0 .001292 0.002448 0.004836 

b −0 .003630 0.009959 0.017911 −0 .001655 0.007979 0.015121 

ηc −0 .002246 0.008127 0.007931 −0 .007331 0.007025 0.014380 

α 0 .006913 0.012972 0.025378 0 .007441 0.010457 0.022517 

ρA −0 .002622 0.005543 0.006191 −0 .002433 0.004831 0.006072 

σ A −0 .0 0 0519 0.0 0 0520 0.001539 −0 .0 0 0504 0.0 0 0456 0.001367 

Bias and standard error from Monte Carlo simulation. GMM2 is based on first two moments, GMM3 on 

first three moments. The standard error is on the one hand computed given the asymptotic distribution 

(15) and on the other hand it is equal to the variation of the estimates. 

Table 5 

Bias and standard deviation given sample size T = 600. 

GMM2 GMM3 

Standard error Standard error 

Parameter Bias Asymptotic Monte Carlo Bias Asymptotic Monte Carlo 

δ −0 .0 0 0321 0.002030 0.003130 −0 .0 0 0604 0.001804 0.002888 

β 0 .0 0 0199 0.002265 0.003290 0 .0 0 0547 0.001992 0.003082 

b 0 .0 0 0407 0.006688 0.011130 0 .0 0 0721 0.005934 0.009681 

ηc −0 .003468 0.005320 0.007895 −0 .005867 0.004869 0.009903 

α 0 .001590 0.008910 0.014365 0 .002804 0.007898 0.013069 

ρA −0 .002636 0.003773 0.004940 −0 .002397 0.003458 0.004732 

σ A −0 .0 0 0361 0.0 0 0382 0.0 0 0899 −0 .0 0 0391 0.0 0 0347 0.0 0 0823 

Bias and standard error from Monte Carlo simulation. GMM2 is based on first two moments, GMM3 on 

first three moments. The standard error is on the one hand computed given the asymptotic distribution 

(15) and on the other hand it is equal to the variation of the estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

asymptotically normal: 

√ 

T ( ̂  θ − θ ) → N(0 , 
(
D 

′ W D 

)−1 
D 

′ W SW D 

(
D 

′ W D 

)−1 
) , (15)

where S = 

∑ ∞ 

s = −∞ 

[ m (y t ) − E(m (y t )) ] [ m (y t−s ) − E(m (y t−s )) ] 
′ 
. The optimal weight matrix is then given by W = S −1 and the

corresponding GMM estimator has the smallest possible variance among all possible positive-definite weighting matrices.

In the over-identified case, we are also able to formally test the hypothesis, that the model is able to describe the data

generating process. To sum up, either because of identification concerns or the ability to perform a model specification test,

researchers are in search for good instruments used in the GMM estimation. Usually one can add lagged variables in the

estimation, we propose, alternatively or additionally, to include unconditional third- and fourth-order product moments (or

cumulants). Of course, one has to be careful of using too many instruments, a point emphasized by Mavroeidis (2005) . 

We will now illustrate our closed-form expressions for the GMM estimation of a RBC model with variable labor and

internal habit formation solved by a third-order approximation. The model has nine parameters: the depreciation rate δ,

the discount factor β , the internal consumption habit parameter b , the consumption curvature parameter ηc , the labor

supply curvature parameter ηl , the weight of leisure in the utility parameter θ l , the elasticity parameter in the production

function α, the autoregressive coefficient of the productivity shock ρA and its standard deviation σ A . We fix ηl = 1 and θl =
3 . 48 and estimate all other parameters with two estimators, one based on m 1 , m 2 and m 3 with one lagged autocovariance

(called GMM2) and one including additionally m 4 (called GMM3), that is including contemporaneous third-order product

moments in the estimation. We use a two-step estimation procedure. In the first step, the sample mean of the moments

is used to estimate E [ m ( θ )] and the corresponding weighting matrix is obtained by using a 20-lag ( Newey and West, 1987 )

heteroscedasticity and autocorrelation consistent (HAC) estimate of the variance of the moment conditions with a Bartlett

kernel. We note that different HAC estimates can differ and distort the estimation in finite samples, see Den Haan and Levin

(1997) for a discussion. In the second step, we use the consistent first step estimate to compute the optimal weighting

matrix. Both steps are iterated twice. We investigate the finite sample bias and standard error of both estimators for sample

sizes T = 250 (see Table 4 ) and T = 600 (see Table 5 ) with 150 replications. To this end, we simulate artificial data for

consumption, investment and labor given the third-order pruned state space for δ = 0 . 025 , β = 0 . 984 , b = 0 . 5 , ηc = 2 , α =
0 . 667 , ρA = 0 . 979 and σA = 0 . 0072 . Note that this parameterization is taken from the example model of Andreasen et al.

(2016) ’s GMM toolbox. 
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The bias of both estimators is negligibly small and only reflects simulation error. It decreases in magnitude as T increases

due to the consistency of the GMM estimators. The standard errors decrease as T increases, the asymptotic one is generally

smaller than the one based on the variation of the estimates. Note that GMM3 standard errors are slightly smaller than the

corresponding ones of GMM2, independent of the sample size. This is not surprising, since we use more moments in GMM3,

therefore it is more efficient. Lastly, we comment on execution time. Each replication takes on average less than a minute

to simulate data and optimize the GMM criterion function. 

8. Conclusion 

The contribution of this paper is twofold. First, a theoretical contribution, as we derive expressions for unconditional

moments, cumulants and polyspectra for non-Gaussian or nonlinear (pruned) solutions to DSGE models. Since higher-order

cumulants and polyspectra measure the departure from Gaussianity, these expressions can provide means to gain more

information for calibration and estimation. Accordingly, Mutschler (2015) shows that this approach imposes additional re-

strictions, which can be used to identify parameters that are unidentified in a first-order approximation with Gaussian in-

novations. The estimation of non-Gaussian DSGE models or ones solved by higher-order approximations is typically done by

means of (Bayesian) Sequential Monte Carlo (SMC) methods. This methodology, however, is time consuming (and difficult to

implement) because it relies heavily on artificial sampling to evaluate the likelihood function. As an alternative, the proposed

GMM estimator is possibly more transparent (and faster) than SMC and therefore useful for teaching and communication.

The trade-off with GMM is that it is not necessary to specify correctly the joint distribution of the random variables, but

the price paid for this flexibility is a loss of asymptotic efficiency relative to full information methods like Maximum Likeli-

hood or Bayesian SMC. Nevertheless, GMM is generally more robust to misspecification ( Ruge-Murcia, 2007 ). There are still

some issues which need to be improved for a serious empirical application. Calculation of the gradient of the moments can

be difficult, however, we need it in order to calculate the variance and weighting matrix. Numerical derivatives are a tricky

business, since different approaches can produce quite different estimates for the variance matrix even though the estimates

for the parameters are very close. Therefore it is advisable to use Mutschler (2015) ’s approach to compute analytically the

gradient in closed form. Having this also provides means to derive a continuously updating weight matrix ( Hansen et al.,

1996 ) instead of a two-step or iterative GMM procedure. 

The second contribution is a computational one and useful for applied researchers, as we provide a DYNARE toolbox

which (1) implements our procedures up to a third-order approximation and (2) performs a GMM estimation including

statistics up to fourth-order. The algorithms are – apart from assumptions on the existence of relevant moments and white-

noise property – independent of the distribution. In this sense, we provide explicit code to evaluate the analytic script files

for the Gaussian as well as Student’s t -distribution as the underlying shock process. The Student’s t -distribution is particu-

larly interesting because of its thick tail property. Moreover, we experimented with generalized extreme value distributions

like the Laplace or skew normal distribution, as we only need a procedure to evaluate joint moments either analytically or

numerically. However, DYNARE’s solution algorithm is not meant to work with asymmetric distributions, as some terms in

the Taylor approximation are wrongly set to zero ( Andreasen, 2012 ), therefore we omit these from the toolbox. 

In conclusion, we will now point to some further applicabilities and extensions of our results. Our methods are naturally

applicable to analyze risk premia in models with stochastic volatility ( Fernández-Villaverde et al., 2015 ) or rare disasters

( Gabaix, 2012; Gourio, 2012 ). Asymmetric distributions are an important feature in models with downward nominal wage

rigidity ( Kim and Ruge-Murcia, 2011; Schmitt-Grohé and Uribe, 2013 ). Our approach can be used to estimate these types of

models with GMM, an exercise left for future research. Moreover, a further application regards the formation of priors for

the parameters of DSGE models in a Bayesian estimation context. It is straightforward to extend Del Negro and Schorfheide

(2008) ’s method for constructing prior distributions from beliefs about steady state relationships and second moments of

the endogenous variables to include higher-order moments as well. Lastly, an estimation based on the bispectrum and

trispectrum is left for future research, starting points are Sala (2015) and Qu and Tkachenko (2012) who estimate linearized

DSGE models in the frequency domain using the spectral density matrix. 
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Appendix A. Using generalized Sylvester equations for cumulants 

The zero-lag cumulants ( k = 2,3,4) C k,z = (I 
n k z 

− [ �k 
j=1 

A ]) −1 · [ �k 
j=1 

B ] · 	k,ξ require the inversion of the big matrix (I 
n k z 

−
[ �k 

j=1 
A ]) . Since C k,z and 	k , ξ are vectors, we can use properties of the Kronecker-product and rewrite the equations to 
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[ C 2 ,z 
n z ×n z 

] = A [ C 2 ,z 
n z ×n z 

] A 

′ + B [ 	2 ,ξ
n ξ ×n ξ

] B 

′ , 

[ C 3 ,z 
n 2 z ×n z 

] = (A � A )[ C 3 ,z 
n 2 z ×n z 

] A 

′ + (B � B )[ 	3 ,ξ

n 2 
ξ
×n ξ

] B 

′ , 

and 

[ C 4 ,z 
n 2 z ×n 2 z 

] = (A � A )[ C 4 ,z 
n 2 z ×n 2 z 

](A � A ) ′ + (B � B )[ 	4 ,ξ

n 2 
ξ
×n 2 

ξ

](B � B ) ′ , 

where [ 
n ×m 

] reshapes a n · m vector into a n × m matrix. In other words, we reduce the inversion problem to a generalized

Sylvester equation, which can be efficiently solved using a doubling or fixed-point algorithm. 
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Supplementary material associated with this paper can be found, in the online version, at 10.1016/j.ecosta.2016.10.005. 
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