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a b s t r a c t

This paper shows how to check rank criteria for a local identification of nonlinear DSGE
models, given higher-order approximations and pruning. This approach imposes addi-
tional restrictions on (higher-order) moments and polyspectra, which can be used to
identify parameters that are unidentified in a first-order approximation. The identification
procedures are demonstrated by means of the Kim (2003) and the An and Schorfheide
(2007) models. Both models are identifiable with a second-order approximation. Further-
more, analytical derivatives of unconditional moments, cumulants and corresponding
polyspectra up to fourth order are derived for the pruned state-space.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Many different methods of solving and estimating DSGE models have been developed and used in order to obtain a detailed
analysis and thorough estimation of dynamic macroeconomic relationships. Recently, the question of identifying DSGE models
has proven to be of major importance, especially since the identification of a model precedes estimation and inference. Several
formal methods have been proposed to check local identification in linearized DSGE models via rank criteria (Iskrev, 2010;
Komunjer and Ng, 2011; Qu and Tkachenko, 2012) or Bayesian indicators (Koop et al., 2013), for a review and methodological
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comparison of these techniques, see Mutschler (2015b). Whereas there is a growing literature on the nonlinear estimation of
DSGE models (Andreasen, 2011, 2013; Fernandez-Villaverde and Rubio-Ramırez, 2007; Herbst and Schorfheide, 2014;
Ivashchenko, 2014; Kollmann, 2015), all identification methods focus on the linear approximation of the DSGE model to the
first order. Furthermore, since the majority of papers assume Gaussian innovations, the proposed criteria are based on first- and
second-order moments only. In this paper, we relax these assumptions and show how to check rank criteria for nonlinear DSGE
models solved by higher-order approximations of the policy functions and by considering higher-order statistics.1 However, there
is a caveat, since higher-order approximations may yield explosive or non-stationary processes. Therefore, we use the pruning
scheme proposed by Kim et al. (2008) and operationalized by Andreasen et al. (2014), who show that the pruned state-space
(PSS) is a linear, stationary and ergodic state-space system, but with non-Gaussian innovations. From an identification point of
view, this may yield additional restrictions on unconditional moments and polyspectra of the observables that can be used to
identify (sets of) parameters which are not identifiable in the linearized DSGE model with Gaussian innovations.

Exploiting these insights, the contribution of this paper is twofold. First, we extend ideas from Iskrev (2010) and Qu and
Tkachenko (2012) to establish rank criteria for higher-order approximations, both in the time and in the frequency domains.
To this end, we show how to analytically calculate the Jacobians of unconditional second-, third- and fourth-order moments,
cumulants and corresponding polyspectra of the PSS, with respect to the deep parameters of the model. In this manner, we
are able to check identification, given theoretical higher-order moments of observables. We limit ourselves to fourth-order
statistics, since third-order cumulants and the bispectrum capture nonlinearities (or non-Gaussianity) for a skewed process,
whereas the fourth-order cumulants and the trispectrum can be used in the case of a non-Gaussian symmetric probability
distribution. Throughout the exposition, we focus on a second-order approximation, since extending ideas and propositions
is – apart from notation and computational implementation – conceptually straightforward for higher-order approxima-
tions. Second, to demonstrate our exposition, all methods are applied to two models, namely those of Kim (2003) and An
and Schorfheide (2007), which are known to have a lack of identification in their (log-)linearized Gaussian versions. In
particular, we show that the parameters governing the adjustment costs in Kim (2003), as well as all parameters including
the coefficients of the Taylor rule in An and Schorfheide (2007), can be identified from the mean and second moments or
power spectrum, as well as from higher-order statistics of the pruned state-space given a second-order approximation.

The ideas and procedures derived are useful both from theoretical and applied points of view. Theoretically, this paper adds
to the literature on the local identification of nonlinear DSGE models by establishing (i) rank criteria for the pruned state-space
representation and (ii) procedures for computing analytical derivatives of unconditional moments, cumulants and polyspectra
for higher-order approximations. Based on these findings, we believe that the suggested approach is a useful new tool before
actually taking nonlinear DSGE models to data. In particular, an applied researcher can check whether (sets of) unidentified
parameters in the linearized model may be estimable, using higher-order approximations, prior to actually using (tedious)
nonlinear estimation methods. Furthermore, given information from higher-order moments or polyspectra the procedure may
also provide guidance for moment-matching estimation approaches or particle likelihood-type estimators. The present paper
is also related to Morris (2014), who likewise derives rank criteria for the pruned state-space (PSS) system, yet in the manner
of Komunjer and Ng (2011). The key differences between our work and Morris (2014) can be summarized with respect to three
aspects. First, the perspective and system representation is different, since Komunjer and Ng (2011)'s approach assumes a
minimal system. For the PSS, this requires the innovations representation. Our approach neither relies on a specific model
framework nor on a minimal system; thus, we do not need to reparametrize the solution system. Second, our criteria also
include unconditional third and fourth moments in the time domain and the bi- and trispectrum in the frequency domain,
whereas Morris (2014) uses only the first two moments. Third, the computations are different. Since the innovation
representation depends on the existence and computation of a discrete algebraic Ricatti equation, it is not possible to derive
analytical derivatives. Nevertheless, both approaches come to similar conclusions, which should help build confidence across
potential users of the pruned state-space for estimating nonlinear DSGE models.

Our MATLAB code is model-independent (a DYNARE implementation is underway) and can be found on the homepage of
the author.

2. DSGE framework

Let Et be the expectation operator conditional on information available at time t, then

Etf xtþ1;utþ1; ytþ1; xt ;ut ; yt jθ
� �¼ 0;

xtþ1 ¼ hðxt ;utþ1;σjθÞ;
ytþ1 ¼ gðxt ;utþ1;σjθÞ;

is called the general DSGE model with deep parameters θ, states xt, controls yt, stochastic innovations ut, and perturbation
parameter σ, which can be converted into a nonlinear first-order system of expectational difference equations f. For the sake
of notation, we assume that all control variables are observable. The vector of innovations ut has EðutÞ ¼ 0 and finite
covariance matrix Eðutu0

tÞ≕Σ ¼ σ2ηη0. Thus, σ is set to be dependent on the standard deviation of one of the shocks, while
1 By higher-order statistics, we mean moments or cumulants of an order exceeding two in the time domain, and their multidimensional Fourier
transform, called polyspectra in the frequency domain.
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scaling all other variances and cross-correlations through η accordingly. Furthermore, ut is nth-order white noise with finite
higher-order moments, where n depends on the order of approximation.2 Apart from the existence of moments and
temporal independence, we do not need to impose any distributional assumptions.3 See Appendix A on how to squeeze the
example models into this framework.4

The solution of such rational expectation models is characterized by policy functions, g and h, that solve (at least
approximately) the system of equations f. We follow Schmitt-Grohè and Uribe (2004) and use perturbation techniques to
solve the model around the nonstochastic steady state given by x ¼ hðx;0;0jθÞ, y ¼ gðx;0;0jθÞ, u ¼ 0 and f ¼ f ðx;u; yjθÞ ¼ 0.
Moreover, we exploit ideas of Gomme and Klein (2011) to approximate the policy functions, using the Magnus and
Neudecker (1999) definition of the Hessian. Denote the Jacobian of f evaluated at the steady state as

Df≔
∂f

∂x0tþ1
;

∂f
∂u0

tþ1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≕f 1

;
∂f

∂y0tþ1|fflffl{zfflffl}
≕f 2

;
∂f
∂x0t

;
∂f
∂u0

t|fflfflfflffl{zfflfflfflffl}
≕f 3

;
∂f
∂y0t|{z}
≕f 4

0
BBBB@

1
CCCCA; ð1Þ

then

Hf≔D vecð½Df �0Þ
is defined as the Magnus–Neudecker Hessian of f, evaluated at the nonstochastic steady state. This definition simplifies
the computations, as well as the analytical derivatives, since no tensor notation is needed and basic matrix algebra
can be used.5

The approximations of the policy functions are a straightforward application of Taylor series expansions in the state
variables. There are several methods and algorithms for calculating the first-order solution matrices, since these are the
coefficients of a first-order linearization or log-linearization of the model. We follow Klein (2000) to obtain the first-order
solutions x̂t ¼ hxx̂t�1þhuut and ŷt ¼ gxx̂t�1þguut , using the generalized Schur decomposition.6x̂t ¼ xt�x and ŷt ¼ yt�y
denote deviations from steady state. The second-order solution matrices can be calculated by inserting the policy functions
into the model equations and noting that the expression is known at the nonstochastic steady state. Therefore, all
derivatives of f must be 0 when evaluated at the nonstochastic steady state. Differentiating f twice using the chain rule of
Magnus and Neudecker (1999, p. 110), evaluating the Jacobian Df and Hessian Hf of f at the nonstochastic steady state, and
setting it to zero yield (after some algebraic calculations, see Gomme and Klein, 2011)

vecðgvvÞ
vecðhvvÞ

" #
¼ �Q �1 vecðRÞ;

hσσ
gσσ

 !
¼ �S�1U: ð2Þ

where gvv and hvv are the Magnus–Neudecker Hessians of g and h with respect to the vector vtjtþ1 ¼ ðx0t ;u0
tþ1Þ0, gσσ and hσσ

the corresponding terms with respect to the perturbation parameter. Note that all terms are evaluated at the nonstochastic
steady state. See Appendix E for the exact expressions of the auxiliary matrices Q ;R; S and U. Furthermore hvv contains all
second-order terms required for the transition equation of states and gvv for the transition equation of controls. We separate
these using index matrices, see Appendix A for an example that clarifies the notation. A third-order approximation using
Magnus–Neudecker Hessians is given in Binning (2013). For our purposes, it is sufficient to note that there are closed-form
solutions that we will differentiate in Section 5 with respect to the deep parameters.

3. Pruned state-space system

Various simulation studies show that Taylor approximations of an order higher than one may generate explosive time
paths, even though the first-order approximation is stable. This is due to artificial fixed points of the approximation, see Kim
et al. (2008, p. 3408) for a univariate example. Thus, the model may be neither stationary nor imply an ergodic probability
distribution, both of which assumptions are essential for identification and estimation. Thus, Kim et al. (2008) propose the
pruning scheme, in which one omits terms from the policy functions that have higher-order effects than the approximation
2 Because we check criteria based on the first four moments of observables in the pruned state-space, we require at least finite eighth moments for a
second-order approximation and finite twelfth moments for a third-order approximation. In other words, ut is at least an eighth- or twelfth-order white
noise process, which implies yt being stationary of order four, see Priestley (1983, p. 105) for a definition of stationary up to order n.

3 Our MATLAB code can handle both the Gaussian, as well as Student's t-distribution provided the moments exist.
4 This is basically a mixture of the DYNARE framework (innovations enter nonlinearly, no distinction between states and controls) and the framework

of Schmitt-Grohè and Uribe (2004) (innovations enter linearly, distinction between states and controls). It can be shown that both frameworks are
equivalent, given an extended state vector, see the technical appendix in Andreasen et al. (2014). In the same fashion, we are able to add measurement
equations and measurement errors by simply extending our model equations, state and control variables accordingly. A selection matrix can be
premultiplied to consider only a subset of controls as observables, see the An and Schorfheide (2007) model in Appendix A.2 for an example.

5 For recent literature in favor of this definition, see Magnus (2010) and Pollock (2013). The online documentation of the code also contains additional
material which clarifies the concept.

6 See Anderson (2008) for a comparison of algorithms, which are basically all equivalent and differ only (slightly) in computational burden.
Furthermore, all provide and check the Blanchard and Kahn (1980) conditions that are necessary in order to have a stable saddle-path solution, i.e. a unique
mapping between state and control variables.
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order.7 For instance, given a second-order approximation, we decompose the state vector into first-order ðx̂ft Þ and second-
order ðx̂st Þ effects ðx̂t ¼ x̂ft þ x̂st Þ, and set up the law of motions for these variables, preserving only effects up to second-order
(see the technical appendix of Andreasen et al., 2014 for details):

x̂ftþ1 ¼ hxx̂
f
t þhuutþ1 ð3Þ

x̂stþ1 ¼ hxx̂
s
tþ1

2Hxx x̂ft � x̂ft
� �

þ1
2Huu utþ1 � utþ1ð Þþ1

2Hxu x̂ft � utþ1

� �
þ1

2Hux utþ1 � x̂ft
� �

þ1
2 hσσσ

2 ð4Þ

ŷtþ1 ¼ gx x̂ft þ x̂st
� �

þguutþ1þ1
2Gxx x̂ft � x̂ft

� �
þ1

2Guu utþ1 � utþ1ð Þþ1
2Gxu x̂ft � utþ1

� �
þ1

2Gux utþ1 � x̂ft
� �

þ1
2 gσσσ

2 ð5Þ

with Hxx being an nx � n2
x matrix containing all second-order terms for the ith state variable in the ith row, whereas Gxx is an

ny � n2
x matrix containing all second-order terms for the ith control variable in the ith row. Hxu, Hux, Gxu and Gux are

accordingly shaped for the cross terms of states and shocks, and Huu and Guu contain the second-order terms for the product
of shocks.8 Thus, terms containing x̂ft � x̂st and x̂st � x̂st are omitted, since they reflect third-order and fourth-order effects
which are higher than the approximation order. Also, there are no second-order effects in utþ1.

It is convenient to extend the state vector to zt≔½ðx̂ft Þ0; ðx̂st Þ0; ðx̂ft � x̂ft Þ0�0: Eqs. (3), (4) and (5) can then be rewritten as a
linear system of equations called the pruned state-space:

ztþ1 ¼ cþAztþBξtþ1 ð6Þ

ŷtþ1 ¼ dþCztþDξtþ1 ð7Þ

where

ξtþ1≔

utþ1

utþ1 � utþ1�vecðΣÞ
utþ1 � xft
xft � utþ1

2
66664

3
77775;

c≔

0
1
2hσσσ

2þ1
2Huu vecðΣÞ

ðhu � huÞ vecðΣÞ

2
64

3
75;

d≔ 1
2gσσσ

2þ1
2Guu vecðΣÞ

h i
;

A≔
hx 0 0
0 hx

1
2Hxx

0 0 hx � hx

2
64

3
75; B≔

hu 0 0 0
0 1

2Huu
1
2Hux

1
2Hxu

0 hu � hu hu � hx hx � hu

2
64

3
75;

C≔ gx gx
1
2Gxx

h i
; D≔ gu

1
2Guu

1
2Gux

1
2Gxu

h i
:

Thus, conceptually we work in a state-space system with a linear law of motion in zt that is very similar to the canonical
ABCD representation of a log-linearized DSGE model; hence, many concepts carry over. For instance, it can be shown that if
the first-order approximation is stable, i.e. all eigenvalues of hx have modulus less than one, the pruned state-space is then
also stable. In other words, all higher-order terms are unique and all eigenvalues of A have modulus less than one.
Furthermore, if ut has finite fourth moments, the pruned state-space system then has finite second moments (see Andreasen
et al., 2014 for closed-form expressions). We show below that if ut has finite eighth moments, the pruned state-space system
then has finite fourth moments.9 Note that apart from the existence of moments and temporal independence, we do not
need to impose any distributional assumptions on ut. Even in the (common) case of ut being normally distributed, ξt is
clearly non-Gaussian, therefore leaving scope for higher-order moments to contain additional information.

The mean of the extended state vector is equal to

μz≔EðztÞ ¼ ðInz �AÞ�1c: ð8Þ

with nz ¼ 2nxþn2
x . Intuitively, the mean of the pruned state-space consists of two effects: the first-order effect

(Eðx̂ft Þ ¼ Eðxft Þ�x ¼ 0) simply states certainty equivalence, i.e. the mean of xt is equal to the steady state in a first-order
approximation. Using a second-order approximation, we adjust the mean for risk, given a constant 1

2hσσσ
2 and the variance
7 This may seem to be an ad hoc procedure, but pruning can also be founded theoretically as a Taylor expansion in the perturbation parameter
(Johnston et al., 2014; Lombardo and Uhlig, 2014) or on an infinite moving average representation (Lan and Meyer-Gohde, 2013). Importantly, the solution
matrices are the same.

8 The proposed notation is the same as in the technical appendix of Andreasen et al. (2014), regarding the DYNARE notation. The second-order solution
matrices can be obtained from our Magnus–Neudecker notation, using MATLAB's permute and reshape functions, see Appendix A for a simple example that
clarifies the notation used in the code.

9 This approach also works for higher-order approximations. That is, appending the state vector accordingly, we are always able to establish a linear
system in the extended state vector. See Andreasen et al. (2014) or Mutschler (2015a) for the corresponding matrices of the third-order PSS. yt and zt have
finite fourth moments, if ut has finite twelfth moments.
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of the states:

vecðΣxÞ≔Eðx̂ft � x̂ft Þ ¼ ðIn2
x
�hx � hxÞ�1ðhu � huÞ vecðΣÞ: ð9Þ

Since there is a linear relationship between yt and zt�1 in (7), we obtain

μy≔EðytÞ ¼ yþCμzþd: ð10Þ
For the derivation of moments, cumulants and spectra, we work with zero mean variables to simplify the notation and
expressions in the following sections. Therefore, we denote ~zt≔zt�μz and ~yt≔yt�μy in the following section.

4. Unconditional moments, cumulants and polyspectra up to fourth-order

Most linear DSGE models assume Gaussian innovations.10 Since a zero mean Gaussian process is characterized completely
by its second moment, all identification criteria focus only on information from the autocorrelation structure in the time
domain or the power spectrum in the frequency domain. However, whenever we are confronted with nonlinearities or non-
Gaussian stochastic innovations as in the pruned state-space, it is natural to analyze whether we are able to exploit
information from higher-order moments for the identification and estimation of parameters. Researchers in mathematics,
statistics and signal processing have developed tools, called higher-order statistics (HOS), to solve detection, estimation and
identification problems when the noise source is non-Gaussian or we are faced with nonlinearities.11 However, applications in
the macroeconometric literature are rather sparse.12 The basic tools of HOS are cumulants, which are defined as the
coefficients in the Taylor expansion of the log moment generating function in the time domain; and polyspectra, which are
defined as Fourier transformations of the cumulants in the frequency domain. Formally, the kth-order (k¼ 2;3;4) cumulants of
the kth-order stationary, mean zero vector process ~ztðt1; t2; t3Z0Þ are given by the nz

k
vectors Ck;z as

C2;zðt1Þ≔E½~z0 � ~zt1 �;
C3;zðt1; t2Þ≔E½~z0 � ~zt1 � ~zt2 �;
C4;zðt1; t2; t3Þ≔E½~z0 � ~zt1 � ~zt2 � ~zt3 ��C2;zðt1Þ � C2;zðt2�t3Þ

�P0
nz C2;zðt2Þ � C2;zðt3�t1Þ
� ��Pnz C2;zðt3Þ � C2;zðt1�t2Þ

� �
;

where Pnz ¼ Inz � Un2
z�nz

and Un2
z�nz

is a ðn3
z � n3

z Þ permutation matrix with unity entries in elements ½ði�1Þnzþ
j; ðj�1Þn2

z �; i¼ 1;…;n2
z and j¼ 1;…;nz, and zeros else. Here, we adopt the compact notation of Swami and Mendel (1990)

and store all product-moments of a mean zero vector-valued process in a vector using Kronecker products. For example, the
second moments of ~zt can either be stored in a nz � nz matrix Eð~zt � ~z 0tÞ≔Σz or in the n2

z � 1 vector Eð~zt � ~ztÞ ¼ vecðΣzÞ; this
notion naturally carries over to higher orders. There is an intimate relationship between moments and cumulants; if two
probability distributions have identical moments, they will have identical cumulants as well. In particular, the second cumulant is
equal to the autocovariance matrix and the third cumulant to the autocoskewness matrix. The fourth-order cumulant, however,
is the fourth-order product-moment (autocokurtosis matrix) less than the second-order moments. In general, for cumulants
higher than three, we need to know the lower-order moments or cumulants. Nevertheless, using cumulants is preferable for
several reasons. For instance, all cumulants of a Gaussian process of order three and above are zero, whereas the same applies
only to odd product-moments. Furthermore, the cumulant of two statistically independent random processes equals the sum of
the cumulants of the individual processes (which is not true for higher-order moments). And lastly, cumulants of a white noise
sequence, such as ξt, are Kronecker delta functions, so that their polyspectra are flat (Mendel, 1991).13

Assuming that Ck;zðt1;…; tk�1Þ is absolutely summable, the kth-order polyspectrum Sk;z is defined as the (k-1)-
dimensional Fourier transform of the kth-order cumulant:

Sk;z ω1;…;ωk�1ð Þ≔ 1

ð2πÞk�1

X1
t1 ¼ �1

:::
X1

tk� 1 ¼ �1
Ck;z t1;…; tk�1ð Þ � expf� i

Xk�1

j ¼ 1

ωjtjg;

with ωjA ½�π;π� and imaginary i (see Swami et al. (1994) for further details). The second-, third- and fourth-order spectra
are called the power spectrum, bispectrum and trispectrum, respectively. The power spectrum corresponds to the well-
studied spectral density, which is a decomposition of the autocorrelation structure of the underlying process (Wiener–
Khinchin theorem). The bispectrum can be viewed as a decomposition of the third moments (auto- and cross-skewness)
over frequency and is useful for considering systems with asymmetric nonlinearities. In studying symmetric nonlinearities,
the trispectrum is a more powerful tool, as it represents a decomposition of (auto- and cross-) kurtosis over frequency.
10 Two notable exceptions are Curdia et al. (2014) and Chib and Ramamurthy (2014) who estimate two standard linear DSGE models with Student's t-
distributed errors and conclude that these models outperform their Gaussian counterparts. Our code can handle this case as well, since a t-distributed
random variable can be represented as the product of two independent random variables, an inverse Gamma distributed variable and a Gaussian one. See
Appendix B for details.

11 For introductory literature and tutorials, see the textbooks of Brillinger (2001), Nikias and Petropulu (1993), Priestley (1983) and the references
therein.

12 Most theoretical and applied econometric literature is either concerned with tests for normality (e.g. Bao, 2013; Rusticelli et al., 2008) or method of
moments estimation (e.g. Dagenais and Dagenais, 1997; Erickson and Whited, 2002). For an application to DSGE models, see Mutschler (2015a).

13 For a mathematical discussion of using cumulants instead of moments in terms of ergodicity and proper functions, see Brillinger (1965).
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Furthermore, both the bi- and trispectrum will be equal to zero for a Gaussian process, such that departures from
Gaussianity will be reflected in these higher-order spectra.

Standard results from VAR(1) systems and insights from HOS can be used, regarding the computation of unconditional
cumulants and polyspectra in the PSS. First, it is trivial to show that ξt is zero meanwhite noise with finite moments, since it
is a function of x̂ft ;utþ1 and utþ1 � utþ1. The kth-order cumulants of ξt are

Ck;ξðt1;…; tk�1Þ ¼
Γk;ξ if t1 ¼⋯¼ tk�1 ¼ 0;
0 otherwise;

(

and corresponding polyspectra Sk;ξðω1; :::;ωk�1Þ ¼ ð2πÞ1�kΓk;ξ are flat. Regarding the computation of Γk;ξ, see also Appendix
B.14 There, we show that even if the underlying shock process ut is Gaussian, ξt is not normally distributed, since its higher-
order cumulants are not equal to zero.

Letting ½�k
j ¼ 1XðjÞ� ¼ Xð1Þ � Xð2Þ � … � XðkÞ for objects X(j), Swami and Mendel (1990) show that given a zero mean

stationary, time-invariant linear state-space system, the cumulants of the state vector ~zt:

Ck;zðt1;…; tk�1Þ ¼ ½�k�1
j ¼ 0A

tj � � Ck;zð0;…;0Þ

are given in terms of their zero-lag cumulants:

Ck;zð0;…;0Þ ¼ ðInkz �½�k
j ¼ 1A�Þ�1 � ½�k

j ¼ 1B� � Γk;ξ

which can be computed efficiently using iterative algorithms for generalized Sylvester equations (see Appendix C).
Furthermore there is considerable symmetry (by using appropriate permutation matrices); in particular, all second-order
cumulants can be computed from t140, all third-order cumulants from t1Zt240 and all fourth-order cumulants from
t1Zt2Zt340. Since there is a linear relationship between yt and zt�1 in (7), we obtain closed-form expressions for the kth-
order cumulants of our observables (after subtracting the mean). That is, for tj40

Ck;yð0;…;0Þ ¼ ½�k
j ¼ 1C�Ck;zð0;…;0Þþ½�k

j ¼ 1D�Γk;ξ; ð11Þ

Ck;yðt1;…; tk�1Þ ¼ ½�k
j ¼ 1C�Ck;zðt1;…; tk�1Þ: ð12Þ

Lastly, for the identification criteria based on cumulants, we stack all theoretical second, third and fourth cumulants into
vectors

m2ðθ; TÞ ¼ C2;yð0Þ0;…; C2;yðT�1Þ0� �0
;

m3ðθ; TÞ ¼ C3;yð0;0Þ0;…; C3;yðT�1; T�1Þ0� �0
;

m4ðθ; TÞ ¼ C4;yð0;0;0Þ0;…; C4;yðT�1; T�1; T�1Þ0� �0
:

Regarding the computation of polyspectra, consider the vector moving average representation (VMA) of
~zt ¼ zt�μz ¼

P1
j ¼ 0 A

jBξt� j. Using Eq. (7) and lag operator L, we obtain the VMA for our controls:

~yt ¼ yt�y�Cμz�d¼
X1
j ¼ 0

CAjBξt� j�1þDξt ¼HξðL�1Þξt

with transfer function HξðzÞ ¼DþC zInz �A
� ��1B for zAC. Setting zj ¼ e� iωj , with imaginary i and ωjA ½�π;π�, we obtain the

Fourier transformations of the cumulants of ~yt , i.e. the power spectrum S2;y, bispectrum S3;y and trispectrum S4;y:

S2;yðω1Þ ¼ ð2πÞ�1 Hðz�1
1 Þ � Hðz1Þ

� �
Γ2;ξ; ð13Þ

S3;yðω1;ω2Þ ¼ ð2πÞ�2 Hðz�1
1 � z�1

2 Þ � Hðz1Þ � Hðz2Þ
� �

Γ3;ξ; ð14Þ

S4;yðω1;ω2;ω3Þ ¼ ð2πÞ�3 Hðz�1
1 � z�1

2 � z�1
3 Þ � Hðz1Þ � Hðz2Þ � Hðz3Þ

� �
Γ4;ξ: ð15Þ

In summary, the pruned state-space representation is a stable system and has well-defined statistical properties, which
we can exploit for our identification analysis. In particular, we see that an approximation to higher orders yields non-
Gaussian innovations. Intuitively, this yields additional restrictions on moments and polyspectra, which may tighten the
identifiability of model parameters. Also, since higher-order cumulants and polyspectra measure the departure from
Gaussianity, we may also gain additional information by considering higher-order statistics. In Section 6 we show how to
incorporate these additional restrictions into formal identifiability criteria, but first, we discuss the derivatives of these
objects.
14 Γk;ξ can be partitioned into several submatrices which can be computed symbolically element-by-element, and contain many duplicate entries. For
instance, note that E½ξt � ξt � ξt � is of dimension n3

ξ , but the number of distinct elements is nξðnξþ1Þðnξþ2Þ=6, because ξi;tξj;tξk;t ¼ ξj;tξi;tξk;t ¼ ξi;tξk;tξj;t
and so forth. We can use special matrix algebra analogous to the duplication matrix, called triplication and quadruplication matrix (Meijer, 2005), to ease
the computations for higher-order product-moments of ξt.
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5. Derivatives of solution matrices, cumulants and polyspectra

To establish rank criteria, we need derivatives of all solution matrices, cumulants and polyspectra with respect to the
deep parameters θ. Following ideas from Iskrev (2008) and Schmitt-Grohè and Uribe (2012, Suppl. Mat., Section A.3), we
view f, as well as the Jacobian of f, as a function of θ and of the steady state vector xuyðθÞ≔ðxðθÞ0;uðθÞ0; yðθÞ0Þ0, which is also a
function of θ. Thus, implicitly, we have f ðxuyðθÞ;θÞ ¼ 0. Differentiating yields

df≔
∂f ðxuyðθÞ;θÞ

∂θ0 ¼ ∂f
∂xuy 0

∂xuy
∂θ0 þ ∂f

∂θ0 ¼ 03
∂xuy
∂θ0 ¼ � ∂f

∂xuy 0

	 
�1 ∂f
∂θ0:

This expression can easily be obtained analytically using, for example, MATLAB's symbolic toolbox. The derivative of the
Jacobian Df ðxuyðθÞ;θÞ with respect to θ is then given by

dDf≔
∂vecðDf ðxuyðθÞ;θÞÞ

∂θ0 ¼ ∂vecðDf Þ
∂xuy 0

∂xuy
∂θ0 þ∂vecðDf Þ

∂θ0 :

Note that dDf can be partitioned according to Eq. (1) to obtain df 1, df 2, df 3 and df 4.
This approach can be extended to calculate the analytical derivative of the Magnus–Neudecker Hessian with respect to θ,

since H≔Hf ðxuyðθÞ;θÞ15:

dH≔
∂vecðHf ðxuyðθÞ;θÞÞ

∂θ0 ¼ ∂vecðHf Þ
∂xuy 0

∂xuy
∂θ0 þ∂vecðHf Þ

∂θ0 :

Our MATLAB code writes all analytical derivatives, using symbolic expressions, into script files for further evaluation. For
numerical derivatives, we employ the two-sided central difference method. Note that we use the following notation:
dX≔∂vecðXÞ

∂θ0 for the Jacobian of a matrix.
Furthermore, we repeatedly use the commutation matrix Km;n which transforms the m� n matrix A, such that

Km;n vecðAÞ ¼ vecðA0Þ16, and the following useful results from matrix differential calculus:

Theorem 1 (Derivative of products). Let A be a ðm� nÞ matrix, B a ðn� oÞ it matrix, C a ðo� pÞ matrix and D ðp� qÞ matrix,
then the derivative of vecðABCDÞ with respect to θ is given by

dðABCDÞ ¼ ðD0C0B0 � ImÞ dAþðD0C0 � AÞ dBþðD0 � ABÞ dCþðIq � ABCÞ dD

Proof Magnus and Neudecker, (1999, p. 175). Note that dX≔∂vecðXÞ
∂θ0 .□

Theorem 2 (Derivative of Kronecker products). Let X be a ðn� qÞ matrix, Y a ðp� rÞ matrix and Kr;n the commutation matrix of
order (r,n), then the derivative of vecðX � YÞ with respect to θ is given by

dðX � YÞ ¼ ðIq � Kr;n � IpÞ ðInq � vecðYÞÞ dXþðvecðXÞ � IprÞ dY
� �

Proof Magnus and Neudecker, (1999, p. 185). Note that dX≔∂vecðXÞ
∂θ0 .

Moreover, we make use of the following algorithm:

Algorithm 1 (Derivative of partitioned matrix). Let X be a ðm� nÞ matrix, partitioned such that X ¼ X1 X2½ �, with X1 being
ðm� n1Þ and X2 being ðm� n2Þ, n¼ n1þn2.
1.
 Derive dX1 and dX2; dX1 is of dimension ðmn1 � nθÞ and dX2 of dimension ðmn2 � nθÞ.

2.
 For i¼ 1;…;nθ

(a) Denote the ith column of dX1 and dX2 as dXi
1 and dXi

2, respectively. dX
i
1 is of dimension ðmn1 � 1Þ and dXi

2 of
dimension ðmn2 � 1Þ.

(b) Reshape dXi
1 into a ðm� n1Þ matrix ½dXi

1�ðm�n1Þ and dXi
2 into a ðm� n2Þ matrix ½dXi

2�ðm�n2Þ.

(c) Store vecð ½dXi
1�ðm�n1Þ½dXi

2�ðm�n2Þ
h i

Þ into the ith column of a matrix dX.
15 A
16 Se
3.
 dX is the derivative of X with respect to θ and is of dimension ðmn� nθÞ.
Note that dX≔∂vecðXÞ
∂θ0 .
nother (faster) approach is based on generalized Sylvester equations in the manner of Ratto and Iskrev (2012).
e Magnus and Neudecker (1999, p. 46) for the definition and Magnus and Neudecker (1999, p. 182) for an application regarding derivatives.
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Derivatives of first-order solution matrices: Let nv ¼ nxþnu, n¼ nvþny, Kn;q be the commutation matrix of order (n,q),
gv ¼ ½gx; gu�,

hv ¼
hx hu
0

nu�nx
0

nu�nu

0
@

1
A and F ¼ �ðh0vg0v � InÞ df 2�ðh0v � InÞ df 1�ðg0v � InÞ df 4�df 3;

then the derivatives of the first-order solution matrices are given by

dgv
dhv

" #
¼ ðh0v � f 2ÞþðInv � f 4Þ ðInv � f 2gvÞþðInv � f 1Þ
� ��1 � F;

dg0v ¼ Kny ;nv dgv; dh0v ¼ Knv ;nv dhv;

dhtv ¼ ðInv � ðhvÞt�1Þ dhvþðh0v � Inv Þ dðht�1
v Þ; tZ2:

See Schmitt-Grohè and Uribe (2012, Suppl. Mat., Section A.3) for the derivation of these results. Since we use indices to keep
track of terms belonging to states and shocks in hv and gv, it is straightforward to compute dhx;dhu;dgx and dgu by simply
selecting the corresponding rows of dhv and dgv accordingly.

Derivatives of second-order solution matrices: Differentiating 2 with respect to θ requires the analytical derivatives of Q�1,
R, S�1 and T. See Appendix E for the derivation of these objects. Then, the analytical derivatives of the second-order solution
matrices with respect to θ can be summarized as

d
vecðgvvÞ
vecðhvvÞ

" #
¼ �Q �1 dR�ðvecðRÞ0 � Inn2v Þ dðQ

�1Þ;

d
hss
gss

" #
¼ �ðT 0 � InÞ dðS�1Þ�S�1 dT :

The Jacobians of Gxx, Gxu, Gux, Guu, Hxx, Hxu, Hux and Huu are simple permutations of the rows in dgvv and dhvv, see Appendix D
for an example.

Derivatives of pruned state-space solution matrices: Differentiating A, B, C, D, c and d with respect to θ is a straightforward
application of Algorithm 1 for partitioned matrices. This requires the analytical derivatives of first- and second-order
solution matrices (see above), as well as of Σ, which is given analytically by the model.

Derivative of means: Differentiating the expressions for the means of zt (8) and yt (10) with respect to θ requires the
analytical derivatives of the pruned state-space solution matrices. We obtain

dμz ¼ ½ðInz �AÞ0��1 � ðInz �AÞ�1
� �

dAþðInz �AÞ�1 dc;

dμy ¼ dyþC dμzþðμ0
z � Iny Þ dCþdd:

Derivatives of cumulants: Differentiating the cumulants for yt of order k, requires dΣξ (given in Appendix E), derivatives of
Kronecker products of the solution matrices (due to Theorem 2), and the Jacobians of the zero-lag cumulants, dCk;zð0;…;0Þ,
for which we make use of generalized Sylvester equations as outlined in Appendix C. The analytical derivatives of the
cumulants in Eqs. (11) and (12) are then a simple application of Theorem 1.

Derivatives of polyspectra: To obtain the derivative of Sk;yðω1;…;ωk�1Þ w.r.t. θ in Eqs. (13) and (15) analytically, we divide
the interval ½�π;π� into N subintervals to obtain Nþ1 frequency indices with ωs denoting the s-th frequency in the
partition. The following steps can be conducted simultaneously using parallel computation: for each
zj ¼ e� iωsj ðj¼ 1;…; k�1; sj ¼ 1; :::Nþ1; s1r⋯rsk�1; imaginary iÞ we first compute the derivative of HξðzjÞ and its conjugate
transpose, using the expression in Appendix E. The Jacobians dSk;yðω1;…;ωk�1Þ then follow according to Theorem 1.

6. Identification criteria based on rank conditions

In the literature, three formal methods based on ranks have been proposed to check identification via (i) observational
equivalent first and second moments (Iskrev, 2010), (ii) observational equivalent spectral densities (Qu and Tkachenko,
2012) and (iii) implications from control theory for observational equivalent minimal systems (Komunjer and Ng, 2011) for
linearized DSGE models to the first-order. Since the pruned state-space (PSS) is a linear system with well-defined statistical
properties, the same criteria can be checked, in particular for its mean, second-order moments and spectral density. In fact,
we even extend Iskrev (2010)'s criteria for third- and fourth-order cumulants and Qu and Tkachenko (2012)'s criteria for the
bi- and trispectrum of observables. But first, we state the underlying assumptions and definitions of local identifiability.

Assumption 1. LetΘ be the parameter space that yields the determinacy region of the DSGE model. Furthermore, assume yt
(t ¼ 1;…; T) is stationary to at least order four.

The first part of Assumption 1 is standard in the DSGE literature due to the rational expectation hypothesis, see Milani
(2012) for a discussion. The second part needs some clarification. This concept requires observables to have finite and
constant first, second, third and fourth moments, that only depend on the time difference but not on time itself. This is
basically an extension of the usual covariance stationarity assumption. The literature on ARCH(1) discusses some practical
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aspects of fourth-order stationarity (see e.g. Teyssiere and Kirman, 2011, Chapter 1 and the references therein). The HOSA
toolbox for MATLAB provides guidance on the computational aspects of sample estimates and testing constancy of higher-
order moments, cumulants and polyspectra.

We follow Deistler (1976) and define identifiability as a concept in moments, cumulants and polyspectra, not in
probability laws.17 We call θ0AΘ and θ1AΘ observationally equivalent (with respect to fytg), if they generate the same first
four moments, cumulants or polyspectra of yt.

Definition 1 (Identifiability from first four cumulants or moments). θ0AΘ is said to be locally identifiable from the first four
moments of yt, if there is an open neighborhood of θ0 in which μyðθ0Þ ¼ μyðθ1Þ, m2ðθ0; TÞ ¼m2ðθ1; TÞ, m3ðθ0; TÞ ¼m3ðθ1; TÞ
and m4ðθ0; TÞ ¼m4ðθ1; TÞ imply θ0 ¼ θ1 for any θ1AΘ.

Definition 2 (Identifiability from mean and polyspectra). θ0AΘ is said to be locally identifiable from the mean, power
spectrum, bispectrum and trispectrum of yt, if there is an open neighborhood of θ0 in which μyðθ0Þ ¼ μyðθ1Þ,
S2;yðω1;θ0Þ ¼ S2;yðω1;θ1Þ, S3;yðω1;ω2;θ0Þ ¼ S3;yðω1;ω2;θ1Þ and S4;yðω1;ω2;ω3;θ0Þ ¼ S4;yðω1;ω2;ω3;θ1Þ for all ωjA ½�π;π�
ðj¼ 1;2;3Þ imply θ0 ¼ θ1 for any θ1AΘ.

The first definition corresponds to Iskrev (2010) in the time domain and the second definition to Qu and Tkachenko (2012)
in the frequency domain. Apart from the different perspectives, Definition 1 states identifiability for a finite number of
moment conditions, whereas Definition 2 corresponds to the complete set of dynamic properties. The criteria we derive all
stem essentially from Rothenberg (1971), who proposes identifiability conditions based on injectivity of functions. The
mappings we consider are the unconditional mean, unconditional cumulants (or moments) and corresponding polyspectra.
Therefore, the fundamental idea is to determine, whether these mappings are unique for θ. Basic mathematical results for
systems of equations can then be applied. This set of criteria is the most basic and the closest to ideas from the early work on
identification in systems of linear equations, since it is based on the uniqueness of a solution (Koopmans and Reiersol, 1950;
Fisher, 1966; Hannan, 1976). Consequently, rank and order conditions are derived, and it is also possible to pinpoint the (sets
of) parameters that are indistinguishable from one another.

Proposition 1 (Iskrev PSS). Let qrT and assume that

mðθ; qÞ≔ μ0
y m2ðθ; qÞ0 m3ðθ; qÞ0 m4ðθ; qÞ0

� �0
:

is a continuously differentiable function of θAΘ. Let θ0AΘ be a regular point, θ is then locally identifiable at a point θ0 from the
first four cumulants (or moments) of yt, if and only if

M qð Þ≔∂mðθ0; qÞ
∂θ0 ð16Þ

has a full column rank equal to the number of parameters for qrT .

Proof. Follows Iskrev, 2010, Theorem 2 and Rothenberg, 1971, Theorem 6. □

Remark 1. In other words, we extend Iskrev (2010)'s approach and focus on the first four moments of the pruned state-
space system. The test checks whether these moments are uniquely determined by the deep parameters, given a finite
number of lags. This immediately gives rise to a necessary condition: the number of identifiable parameters does not exceed
the dimension of mðθ; TÞ. The criteria can also be used for conditional identification, that is, we can fix a subset of
parameters. In our applications, we also check whether the parameters are identifiable through the mean, and second, third
or fourth moments of observables, separately. We denote the corresponding matrices as M2ðqÞ, M3ðqÞ and M4ðqÞ. Iskrev
(2010, Corollary 1) also proposes a necessary condition, that is, checking injectivity of the mapping from the deep
parameters to the solution matrices. To do so, we stack all elements of the steady state, the solution matrices as well as all
parameters of the stochastic innovations that depend on θ into a vector τ:

τðθÞ≔ y0 c0 d0 vecðAÞ0 vecðBÞ0 vecðCÞ0 vecðDÞ0 Γ0
2;ξ Γ

0
3;ξ Γ

0
4;ξ

� �0
and consider the factorization M qð Þ ¼ ∂mðθ;qÞ

∂τðθÞ0
∂τðθÞ
∂θ0 . An immediate corollary implies that a point θ0 is locally identifiable, only if

the rank of

J≔
∂τðθ0Þ
∂θ0 ð17Þ

at θ0 is equal to nθ. This condition is, however, only necessary, because τ may be unidentifiable. Lastly, note that, given a
first-order approximation and the Gaussian distribution for ut, the proposition reduces to Iskrev (2010, Theorem 2), since all
higher-order cumulants are zero in this case.
17 See Deistler and Seifert (1978) for a thorough discussion of identifiability and estimability.
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Proposition 2 (Qu and Tkachenko, 2012, PSS). Assume that the power spectrum (13), bispectrum (14) and trispectrum (15) are
continuous in ωA ½�π;π� and continuous and differentiable in θAΘ. Let

GðθÞ ¼ d μyðθÞ
� �0

d μyðθÞ
� �

þ
Z π

�π
d S2;yðω1;θÞ
� �n

d S2;yðω1;θÞ
� �

dω1

þ
Z π

�π

Z π

�π
d S3;yðω1;ω2;θÞ
� �n

d S3;yðω1;ω2;θÞ
� �

dω1 dω2

þ
Z π

�π

Z π

�π

Z π

�π
d S4;yðω1;ω2;ω3;θÞ
� �n

d S4;yðω1;ω2;ω3;θÞ
� �

dω1 dω2 dω3

and θ0AΘ be a regular point. Furthermore assume that there is an open neighborhood of θ0 in which Gðθ0Þ has a constant rank.
Then, θ is locally identifiable at a point θ0 from the mean, power spectrum, bispectrum and trispectrum of yt, if and only if Gðθ0Þ is
nonsingular, i.e. its rank is equal to the number of parameters.

Proof. Follows Qu and Tkachenko (2012, Theorem 2) and Rothenberg (1971, Theorem 1).18□

Remark 2. Similar to Iskrev (2010)'s approach, Qu and Tkachenko (2012) focus on the dynamic structure of the DSGEmodel, but
they work in the frequency domain. We extend their ideas and check whether the mean, power spectrum, bispectrum and
trispectrum of the observables are uniquely determined by the deep parameters at all frequencies, using the pruned state-space
representation. Note that even when using analytical derivatives, we still have to divide the interval ½�π;π� into sufficient
subintervals to numerically approximate the integrals. The dimension of Gðθ0Þ, however, is always nθ � nθ . Moreover, in the
applications, we check whether the parameters are identifiable through the mean and individual spectra. We denote the
corresponding matrices as G2ðθ0Þ, G3ðθ0Þ and G4ðθ0Þ. Qu and Tkachenko (2012) also provide several extensions, which also apply
in our setting. In particular, we can check identification only from a subset of frequencies, conditional on other parameters being
fixed, or we include general constraints on the parameters. Given a first-order approximation and the Gaussian distribution for
ut, this proposition reduces to Qu and Tkachenko (2012, Theorem 2), since the bi- and trispectrum are zero in this case.

7. Implementation

Both propositions exploit the dynamic structure of the pruned solution of a nonlinear DSGE model, in order to define
mappings and establish conditions for local injectivity of the mappings. For all procedures, we are able to derive necessary
as well as sufficient conditions for identification, based on ranks of Jacobians. For calculating the ranks, we use the singular
value decomposition and count the nonzero entries on the main diagonal. Obviously, this requires a specification of the
tolerance level, for which we use, on the one hand, a range from 1e�3 to 1e�17, and on the other hand, a robust tolerance
level that depends on the size of the matrix ðmaxðsizeðXÞÞ � epsðnormðXÞÞÞ, which is also MATLAB's default value.

Strictly speaking, the criteria are a yes or no condition. Loosely speaking, however, if a parameter is identified for very large
tolerance levels, then it is most likely strongly identified. If it is identified only for very low levels, this may indicate weak
identification.19 In the case of rank deficiency, we are able to pinpoint sets of problematic parameters by analyzing the nullspace. This
will be a vector of zeros, if a parameter does not affect the objective at hand. Furthermore the columns that are linearly dependent
indicate that these sets of parameters are indistinguishable. While this approach, followed by Iskrev (2010), is computationally very
fast, we find that in some cases, there were redundancies in the subsets, since larger subsets may include smaller ones and are not
pinpointed separately. Thus, similar to Ratto and Iskrev (2011) and Qu and Tkachenko (2012, Corollary 4), a more robust method is to
consider the power set and check the criteria for all possible subsets of parameters in a recursive fashion. In our experience, this
brute-force approach yields more reliable results and is computationally just slightly slower, because, if we find a subset of
parameters that are not identified, we can exclude that subset from higher-order subsets.20

There are also some further numerical issues. In particular, choosing the lag order T, as well as the number of subintervals
N for the frequencies, may change the results. In practice, however, this is not a question of extremely sensitive results, but
rather one of speed: the higher T or N, the more time the calculations need.21 With this line of thought, we can make use of
18 Note that we use the complex conjugate n, since the polyspectra are in general complex matrices. dSn

k;y dSk;y is a Gram matrix, therefore it is
Hermitian and positive semidefinite. Furthermore, there is an isomorphism between complex and real matrices such that the ðnk

y � 1Þ vector Sk;y can be
transformed into a ð2nk

y � 2Þ real matrix SR
k;y (see Brillinger, 2001, p. 71; Pintelon and Schoukens, 2001, p. 553). We have the following equivalence:

Sn

k;ySk;y3SR0
k;ySR

k;y . Furthermore 2 � rankðSn

k;ySk;yÞ ¼ rankðSR0
k;ySR

k;yÞ. The same is true if we consider the differential of Sk;y with respect to θj. The proof requires
rankðdSR0

k;y dSR
k;yÞ to be nonsingular, i.e. full rank, for θ0 to be locally identified. This is equivalent to rankðdSn

k;y dSk;yÞ ¼ nθ .
19 Note that this is not based on the literature on strength of identification, but provides only a rough indication for subsets of strongly identified

parameters. Nevertheless, these can be used as an initial guess for the methods used, for instance, in Koop et al. (2013) and Qu (2014) to detect weak
identification.

20 We implemented both procedures for both criteria in the code.
21 In most practical cases, T between 10 and 30 will be sufficient, since the higher the lag, the less informative the identification restrictions.

Furthermore, we experienced with different values for N and find that the results for our applications hardly change. The reason is that, if θ0AΘ is
identified using only a subset of frequencies (small N), it is also identified if considering the full spectrum (N-1) (the converse is not true). Therefore, we
recommend starting with N¼10,000 for the power spectrum, N¼1000 for the bispectrum, N¼100 for the trispectrum and increase N if the results are
unsatisfactory.
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the inherent symmetry in the computation of cumulants and spectra. That is, we only need to focus on the plane t1rt2rt3
for Proposition 1 and s1rs2rs3 ðsj ¼ 1;…;Nþ1; j¼ 1;2;3Þ for Proposition 2, since these determine all other cumulants and
spectra through permutations. The computations of the bispectrum can be accelerated further by noting that the sum
ωs1 þωs2 contains many duplicate elements, since ωsj A ½�π;π�. Thus, we do not need to do the computations for all
NðNþ1Þ=2 runs, but rather for a much smaller set. Similarly, we do not need to evaluate all NðNþ1ÞðNþ2Þ=6 possible values
of ωs1 þωs2 þωs3 for the trispectrum, but only the unique values. See Chandran and Elgar (1994) for a thorough discussion of
principal domains of polyspectra.

Lastly, all procedures check only local identification. Thus, it is necessary to ensure that the identification analysis is valid
for a sufficient range of parameters. Therefore, in our applications, we check all criteria, given first a specific point (e.g.
calibrated parameters or prior mean) and second, given many draws from a prespecified prior domain of θ that yield a
determinate solution. In this way, we have a quasi-global flavor of our rank criteria for the pruned state-space. Also, most
consistent estimators require only local identification for their asymptotic properties to hold. Nevertheless, even if all prior
draws are identifiable, the model is still by no means globally identified.

8. Applications

8.1. The Kim (2003) model

This model extends the neoclassical growth model to include investment adjustment costs twofold. First, intertemporal
adjustment costs, which involve a nonlinear substitution between capital and investment, are introduced into the capital
accumulation equation governed by a parameter ϕ. Second, multisectoral costs, which are captured by a nonlinear
transformation between consumption and investment, enter the budget constraint given a parameter θ. See Appendix A.1
for the model equations and setup. In the original paper, Kim (2003) log-linearizes the model and shows analytically that
there is observational equivalence between these two specifications:
22

Mutsch
[W]hen a model already has a free parameter for intertemporal adjustment costs, adding another parameter for
multisectoral adjustment costs does not enrich the model dynamics (Kim, 2003, p. 534).
Thus, given a first-order approximation, the set ðθ;ϕÞ is observationally equivalent, since both parameters enter as a ratio
ϕþθ
1þθ into the solution. However, considering an approximation to the second-order yields additional restrictions on the first

four moments and corresponding polyspectra, as can be seen in Table 1. All criteria unanimously yield the result that θ and
ϕ are distinguishable using a second-order approximation. This result is robust across tolerance levels, as well as across the
choice of derivatives. Note that Mk checks identification using the mean and kth order cumulants only, whereas Gk uses the
mean and polyspectrum of order k only. Hence, the model is identifiable using either all information from moments and
cumulants (M) and corresponding polyspectra (G) or we could use only individual statistics. Thus, including higher-order
statistics may benefit identification and estimation, but it is not necessary for this model. We demonstrate this by repeating
the analysis for 100 random draws from the prior domain and using only the first two moments and power spectrum in the
objective functions (M2 and G2). For illustrative purposes, similar to Ratto and Iskrev (2011), we add a parameter dumpy into
the analysis, which does not enter the model. As is evident in Fig. 1, all criteria indicate that dumpy and ðθ;ϕÞ are not
identifiable in a first-order approximation.22 Given a second-order approximation and using the mean, autocovariogram and
power spectrum of the PSS, the situation is different: now, in all cases, it is only dumpy that is not identifiable. We thus
conclude that an approximation to the second-order yields additional restrictions to identify θ and ϕ separately, using the
nonlinear DSGE model. This result is – as far as we know – new to the literature.

8.2. The An and Schorfheide (2007) model

This model is a prototypical DSGE model often cited in the literature concerning a lack of identification and nonlinear
estimation. The authors show that (in the version we use in Appendix A.2) the set of parameters ðν;ϕÞ and the steady state
ratio 1=g¼ c=y do not enter the log-linearized solution. However, using a second-order approximation and the particle filter,
they conclude that
the log-likelihood is slightly sloped in 1=g¼ c=y dimension. Moreover, (...) the quadratic likelihood (...) suggests that ν
and ϕ are potentially separately identifiable (An and Schorfheide, 2007, p. 164).
Furthermore, Komunjer and Ng (2011), Mutschler (2015a), Ratto and Iskrev (2011) and Qu and Tkachenko (2012) show that
the coefficients entering the Taylor-rule (ψ1;ψ2;ρR;σRÞ are not separately identifiable in the log-linearized model. However,
An and Schorfheide argue that
For a first-order approximation, we set all second-order terms in the pruned state-space to zero. Note that this is computationally not efficient, see
ler (2015a) for a better approach.



Table 1
Identification analysis of the Kim (2003) model, second-order approximation.

tol Iskrev Qu and Tkachenko

J
T ¼ 30

M2
T ¼ 30

M3
T ¼ 30

M4
T ¼ 30

M
T ¼ 30

G2
N ¼ 10000

G3
N ¼ 1000

G4
N ¼ 100

G
N ¼ 100

1e�03 7 (7) 6 (6) 7 (7) 7 (7) 7 (7) 4 (4) 3 (3) 4 (4) 4 (4)
1e�05 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 6 (6) 5 (5) 6 (6) 6 (6)
1e�07 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)
1e�09 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)
1e�11 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)
1e�13 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)
1e�15 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)
1e�17 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)
Robust 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)

Require 7 7 7 7 7 7 7 7 7

Ranks of identification tests given local point, different tolerance levels tol and analytical derivatives. Numerical derivatives with differentiation step 1e�7
in parenthesis.
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Fig. 1. Sets responsible for nonidentification in the Kim (2003) model: (a) first-order approximation, (b) second-order approximation. Identification results
for M2 (left) and G2 (right) for 100 draws from the prior domain using analytical derivatives with robust tolerance level, T¼30 and N¼10,000. Sets by
brute-force method.

W. Mutschler / Journal of Economic Dynamics & Control 56 (2015) 34–54 45



Table 2
Identification analysis of the An and Schorfheide (2007) model, second-order approximation.

tol Iskrev Qu and Tkachenko

J
T ¼ 30

M2
T ¼ 30

M3
T ¼ 30

M4
T ¼ 30

M
T ¼ 30

G2
N ¼ 10000

G3
N ¼ 1000

G4
N ¼ 100

G
N ¼ 100

1e�03 15 12 15 15 15 7 7 6 8
1e�05 15 14 15 15 15 11 12 12 12
1e�07 15 15 15 15 15 13 14 15 14
1e�09 15 15 15 15 15 13 14 15 15
1e�11 15 15 15 15 15 14 15 15 15
1e�13 15 15 15 15 15 15 15 15 15
1e�15 15 15 15 15 15 15 15 15 15
1e�17 15 15 15 15 15 15 15 15 15
Robust 15 15 15 15 15 15 15 15 15

Require 15 15 15 15 15 15 15 15 15

Ranks of identification tests given local point, different tolerance levels tol and analytical derivatives.
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the nonlinear approach is able to extract more information on the structural parameters from the data. For instance, it
appears that the monetary policy parameter such as ψ1 can be more precisely estimated with the quadratic
approximation (An and Schorfheide, 2007, p. 164).
We confirm these alluring results by checking our rank criteria for a local point, as well as for the prior domain. Table 2 shows
that across criteria, a second-order approximation yields additional restrictions on moments and polyspectra, so as to identify
all parameters of the model in the vicinity of the local point. This holds for each statistic individually, as well as for the
complete set of dynamic properties. In other words, breaking with certainty equivalence, we obtain additional information,
such that we are able to identify previously nonidentifiable parameters. In fact, the first two moments of the PSS already
contain enough departure from linearity and Gaussianity and therefore enough restrictions to identify all parameters. The
same result holds when we repeat the analysis for 100 random draws from the prior domain, again including a parameter
dumpy that does not enter the model. As can be seen in Fig. 2 for a first-order approximation23, the Taylor rule coefficients,
ðϕ;νÞ and c=y enter the problematic sets, whereas in the second-order approximation, in all cases, we are able to identify all
parameters (apart from dumpy). In summary, we confirm An and Schorfheide (2007)'s approach to estimating the model using
a second-order approximation and nonlinear estimation methods. Breaking with certainty equivalence yields additional
information that can be used to identify all parameters of the model. The identifiability of the Taylor rule coefficients through
the nonlinear model is – as far as we know – new to the literature.24

9. Conclusion

We establish formal rank criteria for a local identification of the deep parameters of a nonlinear DSGE model, using the
pruned state-space system and higher-order statistics. Our procedures can be implemented prior to actually using nonlinear
estimation methods. In this way, we demonstrate the identifiability of the Kim (2003) and the An and Schorfheide (2007)
model, when solved by a second-order approximation. For both models, the first four moments and polyspectra contain,
together and individually, additional restrictions, which can be used to estimate sets of parameters that are not identified in
the first-order approximation. Unfortunately, the proposed rank conditions do not point towards a specific estimation
method. An and Schorfheide (2007) show that using a particle filter weakly enhances identifiability of the parameters of
their model. Ivashchenko and Mutschler (2015) use the Central Difference and Quadratic Kalman filter on the pruned as well
as unpruned version of the Kim (2003) model. They also find that the problematic parameters are separately estimable.
Furthermore, the results of the present paper indicate that including higher-order statistics in a moment-matching
approach or likelihood-type estimation may indeed improve the estimation of parameters.

Even though our exposition is based on the second-order approximation, an extension to higher-orders is straightfor-
ward, since the pruned state-space always results in a system which is linear in an extended state vector. Our propositions
and code can also be used for linear DSGE models with non-Gaussian innovations. A further extension would be to establish
rank criteria for other DSGE model specifications, as long as we are able to calculate moments or the spectrum of the data-
See footnote 22.
Morris (2014) also shows that ν and ϕ are separately identifiable. As a robustness check for the Taylor rule coefficients, we compared the spectral
evaluated at θ0 with the spectral densities evaluated at a hundred points from the nonidentification curve (fixing all parameters except the Taylor
efficients). Nonidentification curves are defined in Qu and Tkachenko (2012). If parameters are not identified, points on this curve yield the same
l density at all frequencies apart from an approximation error; whereas if parameters are identified, the spectral densities differ. We found
um relative and absolute deviations in the order 10�4 for the first 100 points away from θ0, which is larger than the implied approximation error of
tep size used in the Euler method), and keep growing. We also used the points reported in Table 1 of Qu and Tkachenko (2012) and found maximum
and absolute deviations in the order of 10þ4. These findings provide further support for our result.
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Fig. 2. Sets responsible for nonidentification in the An and Schorfheide (2007) model: (a) first-order approximation, (b) second-order approximation.
Identification results for M2 (left) and G2 (right) for 100 draws from the prior domain using analytical derivatives with robust tolerance level, T¼30 and
N¼10,000. Sets by brute-force method.
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generating process. For instance, Bianchi (2013) derives analytical moments for Markov switching models, which can be
used in a similar fashion to check identification via rank criteria for Markov switching DSGE models.
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Appendix A. Example models

A.1. The Kim (2003) model

Given auxiliary parameters s¼ βδα
1�βþδβ and auxiliary variable λt ¼ ð1� sÞθ

ð1þθÞc1þ θ
t

the model is given by the following five
equations f:

λt 1þθ
� � it

s

� �θ it
δkt

� �ϕ

¼ βEtλtþ1 α 1þθ
� �

a1þθ
t kαð1þθÞ�1

t þ 1�δ
� �

1þθ
� � Etitþ1

δkt

� �ϕ Etitþ1

s

� �θ
" #

;
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1�sð Þ ct
1�s

� �1þθ
þs

it
s

� �1þθ
" #1=ð1þθÞ

¼ at�1k
α
t�1; log atð Þ ¼ ρalog at�1ð Þþεa;t ;

kt ¼ δ
it
δ

� �1�ϕ

þ 1�δ
� �

kt�1ð Þ1�ϕ

" #1=ð1�ϕÞ

; Etεa;tþ1 ¼ 0:

There are two exogenous states kt and at, and no endogenous states. The controls are ct and it and are both observable. There
is one shock on technology εa;t with standard deviation σa, which we set equal to the perturbation parameter. Thus, given
our definition and ordering of variables we have

ut ¼ εa;t ; xt ¼ ðkt�1; at�1Þ0; yt ¼ ðct ; itÞ0; σ ¼ σA; η¼ ð0 1Þ0:
The steady state of this model is given by

a¼ 1; k¼ δ
sa

� �1=ðα�1Þ
; i¼ δk; c¼ 1�sð Þ αkα

� �1þθ�s i
s

� �1þθ

1�s

" #1=ð1þθÞ

; εa ¼ 0:

We will consider identification of the parameter vector θ at the local point θ0 and prior specification given in the following
overview:
25 Note that y
t is not the control
 vector yt.
Parameters
 Prior specification
 Bounds
θ
 θ0
 Distr.
 Par1
 Par2
 Range
 Lower
 Upper
α
 0.60
 GAMMA
 0.60
 0.30
 Rþ
 1e�5
 1

β
 0.99
 UNIFORM
 0.95
 0.9999
 ½a;bÞ
 0.9
 0.99999

δ
 0.0125
 UNIFORM
 0.01
 0.02
 ½a;bÞ
 0.01
 0.02

θ
 1
 NORMAL
 1.00
 0.50
 R
 �5
 5

ρa
 0.7
 BETA
 0.50
 0.20
 ½a;bÞ
 1e�5
 0.99999

ϕ
 2
 NORMAL
 2.00
 0.50
 R
 �5
 5

σa
 0.5
 INVGAMMA
 0.50
 4.00
 Rþ
 1e�8
 5
The code contains three model specifications: (1) The shock on technology is Gaussian. (2) We add Gaussian measurement errors
to the measurement equations and extend the state vector for these additional stochastic innovations. (3) The shock on
technology is t-distributed with df¼10 degrees of freedom and the prior for df is uniform with lower bound 8 and upper
bound 20.

A.2. The An and Schorfheide (2007) model

First we define auxiliary parameters β¼ exp � rðAÞ
400

� �
, πn ¼ exp πðAÞ

400

� �
and gn ¼ 1

ðc=yÞn, then the model f consists of thirteen
equations:

0¼ 1�ν
νϕπn2 eτct �1

� �� eπt �1ð Þ 1� 1
2ν

� �
eπt þ 1

2ν

	 

þβ eEtπt þ 1 �1
� �

e�τEtctþ 1 þ τct þEtdyt þ 1 þEtπtþ 1 ;

0¼ 1�e�τEtctþ 1 þ τct þRt �ρzzt �Etπtþ 1 ; 0¼ ect �yt �e�gt þϕπn2gn

2
eπt �1ð Þ2;

0¼ Rt�ρRRt�1�ð1�ρRÞψ1πt�ð1�ρRÞψ2 yt�gt
� ��εR;t ;

0¼ dyt�ytþyt�1; 0¼ gt�ρggt�1�εg;t ; 0¼ zt�ρzzt�1�εz;t ;

0¼ YGRt�γðQ Þ �100ðdytþztÞ; 0¼ INFLt�πðAÞ �400πt ;

0¼ INTt�πðAÞ �rðAÞ �4γðQ Þ �400Rt ;

0¼ EtεR;tþ1; 0¼ Etεg;tþ1; 0¼ Etεz;tþ1:

There are three exogenous states Rt ; gt and zt, and one endogenous state variable yt .
25 The controls are ct ; dyt and πt, and the

observables are YGRt ; INFLt and INTt. There are three stochastic innovations: a monetary εR;t , a fiscal εg;t and a technological
shock εz;t . Furthermore we set the perturbation parameter equal to the standard deviation of the shock on technology. Thus,
given our definition and ordering of variables we have

ut ¼ ðεR;t ; εg;t ; εz;tÞ0; xt ¼ ðyt�1;Rt�1; gt�1; zt�1Þ0; yt ¼ ðct ; dyt ;πt ;YGRt ; INFLt ; INTtÞ0; σ ¼ σz;

η¼
σR=σz 0 0

0 σg=σz 0
0 0 1

2
64

3
75; Sobs ¼

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
64

3
75
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with observables equal to Sobs � yt . The steady state of this model is given by

y¼ R¼ g¼ z¼ ε¼ c¼ dy¼ π ¼ 0;YGR¼ γðQ Þ; INFL¼ πðAÞ; INT ¼ πðAÞ þrðAÞ þ4γðQ Þ:

We will consider identification of the parameter vector θ at the local point θ0 and prior specification given in the following
overview:
26 For a third-o
27 Actually ~Mk

indices from the u
rder approximation

; ~ξ has some further
nique function of M
, see Mutschler (2015a).
duplicate terms for nu;nx

ATLAB.

41 due to higher
-order cross terms
 of utþ1 and xt

f
, wh
ich we can further r
Parameters
 Prior specification
 Bounds
θ
 θ0
 Distr.
 Par1
 Par2
 Range
 Lower
 Upper
τ
 2.00
 GAMMA
 2.00
 0.50
 Rþ
 1e�5
 10

ϕ
 50
 GAMMA
 50
 20
 Rþ
 1e�5
 100

ψ1
 1.50
 GAMMA
 1.50
 0.25
 Rþ
 1e�5
 10

ψ2
 0.125
 GAMMA
 0.50
 0.25
 Rþ
 1e�5
 10

ρR
 0.75
 BETA
 0.50
 0.20
 ½a; bÞ
 1e�5
 0.99999

ρg
 0.95
 BETA
 0.80
 0.10
 ½a; bÞ
 1e�5
 0.99999

ρz
 0.90
 BETA
 0.66
 0.15
 ½a; bÞ
 1e�5
 0.99999

rðAÞ
 1.00
 GAMMA
 0.80
 0.50
 Rþ
 1e�5
 10
pðAÞ
 3.20
 GAMMA
 4.00
 2.00
 Rþ
 1e�5
 20

γQ
 0.55
 NORMAL
 0.40
 0.20
 R
 �5
 5

σR
 0.002
 INVGAMMA
 0.30
 4.00
 Rþ
 1e�8
 5

σg
 0.006
 INVGAMMA
 0.40
 4.00
 Rþ
 1e�8
 5

σz
 0.003
 INVGAMMA
 0.40
 4.00
 Rþ
 1e�8
 5

ν
 0.10
 BETA
 0.10
 0.05
 ½a; bÞ
 1e�5
 0.99999

c=y
 0.85
 BETA
 0.85
 0.10
 ½a; bÞ
 1e�5
 0.99999
The code contains three model specifications: (1) Structural shocks are Gaussian. (2) We add Gaussian measurement errors
to the measurement equations and extend the state vector for these additional stochastic innovations. (3) The structural
shocks are t-distributed with df¼10 degrees of freedom and the prior for df is uniform with lower bound 8 and upper
bound 20.

Appendix B. Product-moments of innovations

Given a second-order approximation26, the innovations are defined as the nξ � 1 vector:

ξtþ1 ¼ u0
tþ1; ðutþ1 � utþ1�vecðΣÞÞ0; ðutþ1 � xft Þ0; ðxft � utþ1Þ0

� �0
with nξ ¼ nuþn2

uþ2nxnu elements. We are interested in product-moments M2;ξ≔Eðξt � ξtÞ, M3;ξ≔Eðξt � ξt � ξtÞ and
M4;ξ≔Eðξt � ξt � ξt � ξtÞ with n2

ξ , n
3
ξ and n4

ξ elements, respectively. In order to compute these objects efficiently, we first
reduce the dimension of ξt, since it has some duplicate elements. That is, we compute product-moments for the
n ~ξ ¼ nuþnuðnuþ1Þ=2þnunx vector:

~ξtþ1≔ u0
tþ1; vechðutþ1u0

tþ1�ΣÞ0; ðutþ1 � xft Þ0
� �0

since

ξt ¼

I 0 0
0 DPnu 0
0 0 I

0 0 Knx ;nu

0
BBBB@

1
CCCCA ~ξt≔Fξ � ~ξt

with DPnu being the duplication matrix and Knx ;nu the commutation matrix such that Knx ;nu ðutþ1 � xft Þ ¼ ðxft � utþ1Þ. Then we
have Mk;ξ≔½�k

j ¼ 1Fξ� �Mk; ~ξ with Mk; ~ξ denoting the kth-order product-moment of ~ξt . Since ½�k
j ¼ 1Fξ� does not change with θ,

we can focus on Mk; ~ξ . Mk; ~ξ , however, contains also many duplicate elements. Denote with ~Mk; ~ξ the unique elements of Mk; ~ξ ,
for which we have the following relationships:

M2; ~ξ ¼DPn ~ξ
� ~M2; ~ξ ; M3; ~ξ ¼ TPn ~ξ

� ~M3; ~ξ ; M4; ~ξ ¼QPn ~ξ
� ~M4; ~ξ ;

with the duplication matrix DPn ~ξ
defined by Magnus and Neudecker (1999, Chapter 3, Section 8), and the triplication matrix

TPn ~ξ
and quadruplication matrix QPn ~ξ

similarly defined by Meijer (2005).27 Note that these matrices are independent of θ
and their Moore–Penrose pseudoinverse always exists, e.g. ðQP0

n ~ξ
QPn ~ξ

Þ�1QP0
n ~ξ

�M4; ~ξ ¼ ~M4; ~ξ .Furthermore, DPn ~ξ
, TPn ~ξ

and QPn ~ξ

are constructed such that there is a unique ordering in ~Mk; ~ξ , see Meijer (2005) for an example and more details.
educe using
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To compute the product-moments of ~ξt symbolically we therefore use the following procedure in MATLAB given the
number of shocks nu, the number of state variables nx and the order of product-moments k¼2, 3, 4. Note that these
computations can be used for any DSGE model with nu shocks and nx states:
1.
 Define utþ1 ¼ ðutþ1;1; :::utþ1;nu Þ0, xft ¼ ðxft;1;…xft;nx
Þ0 and Σ ¼ ½Σ ij�nu�nu symbolically with i; j¼ 1;…nu. Set up

~ξt ¼ ðu0
t ; vechðutþ1u0

tþ1�ΣÞ0; ðutþ1 � xft Þ0Þ0:
2.
 Get all integer permutations of ½i1; i2;…in ~ξ
� that sum up to k, with ij ¼ 1;…; k and j¼ 1;…;n ~ξ . Sort them in the ordering of

Meijer (2005).

3.
 For each permutation ½i1; i2;…in ~ξ

� evaluate symbolically

E ð ~ξ1;tÞi1 � ð ~ξ2;tÞi2 �… � ð ~ξn ~ξ ;t
Þin ~ξ

h i
and store it in the vector ~Mk; ~ξ .
3.
 Optionally, use MATLAB's unique function to further reduce the dimension of ~Mk; ~ξ .

The expressions we get in step 3 contain terms of the general form

const: � E½ðu1;tþ1Þiu1 � ðu2;tþ1Þiu2 �… � ðunu ;tþ1Þiunu � � E½ðxf1;tÞix1 � ðxf2;tÞix2 �… � ðxfnx ;tÞixnx �;

that is joint product-moments of the elements of utþ1 and xt
f
(keeping in mind that xt

f
and utþ1 are independent due to the

temporal independence of ut). For instance, for nu ¼ nx ¼ 1 the third-order product-moment of ~ξt is equal to

~M3; ~ξ ¼ vec E

u3 u4�σ2
uu

2

u3x σ4
uu�2σ2

uu
3þu5

xu4�σ2
uxu

2 u3x2

�σ6
uþ3σ4

uu
2�3σ2

uu
4þu6 xσ4

uu�2xσ2
uu

3þxu5

u4x2�σ2
uu

2x2 u3x3

2
6666664

3
7777775

00
BBBBBBB@

1
CCCCCCCA

where we dropped sub- and superscripts and Σ ¼ Eðu2
t Þ ¼ σ2

u. Given a function that evaluates the moment structure of xt
f
and

utþ1 either analytically or numerically, we are able to calculate these terms individually and save them into script files. Our
code can evaluate product-moments from the Gaussian as well as Student's t-distribution analytically. Note, that these
computations need to only be done once for a model, after that we simply evaluate the script files numerically given model
parameters θ.

Gaussian distribution: In the case that ut is normally distributed, xt
f
is also Gaussian with covariance matrix Σx given in Eq. 9.

Therefore,

utþ1

xft

 !
�N

0
0

� �
;

Σ 0
0 Σx

 ! !

is multivariate normal. All joint product-moments are functions of the variances and covariances in Σ and Σx and can be
computed analytically. To this end, we use the very efficient method and MATLAB function of Kan (2008) to derive these
joint product-moments symbolically before storing them into script files. For our example with nu ¼ nx ¼ 1 and Gaussian ut,
we get the unique entries

~M2;ξ ¼ σ2
u;0;0;2σ

4
u;0;σ

2
uσ

2
x

� �0
~M3;ξ ¼ 0;2σ4

u;0;0;0;0;8σ
6
u;0;2σ

4
uσ

2
x ;0

� �0
~M4;ξ ¼ 3σ4

u;0;0;10σ
6
u;0;3σ

4
uσ

2
x ;0;0;0;0;60σ

8
u;0;10σ

6
uσ

2
x ;0;9σ

4
uσ

4
x

� �0

where Σx ¼ Eðxf2t Þ ¼ σ2
x . The cumulants can then be computed as outlined in Section 4. Since the third-order cumulant of a

Gaussian process must be zero, we now see that ξt is clearly non-Gaussian, even if the underlying distribution for ut is
Gaussian.

Student's t-distribution: In the case that ut is t-distributed with v degrees of freedom and covariance matrix v
v�2Σ, we

rewrite ut in terms of an inverse gamma distributed variable W ¼ v�1=2 � IGAMðv=2; v=2Þ, and a normally distributed
variable εt �Nð0;ΣÞ, ut ¼ v�1=2εt (see Kotz and Nadarajah, 2004, Chapter 17; Roth, 2013). Since W and εt are independent,
we have E utu0

t

� �¼ E Wð ÞE εtε0t
� �¼ v

v�2Σ. Whereas all odd product-moments of ut are zero, the even product-moments
(n¼ Pnu

j ¼ 1 iuj is an even number) are given by

E ðu1;tÞiu1 � ðu2;tÞiu2 � : � ðunu ;tÞiunu
h i

¼ E W
n
2

h i
� E ðε1;tÞiu1 � ðε2;tÞiu2 � : � ðεnu ;tÞiunu
h i

:

The first term is equal to E W
n
2

h i
¼ v=2

ðv=2�1Þ�…�ðv=2�n=2Þ and since εt is multivariate normal, we can use Kan (2008)'s procedure
and MATLAB function for the second product. Similar arguments apply to the product-moments of xt

f
, for instance the
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variance is given by

vecðΣxÞ ¼ E½xft � xft � ¼ E½W �|fflffl{zfflffl}
v=ðv�2Þ

� ðIn2x �hx � hxÞ�1ðhu � huÞ � E½εt � εt �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
vecðΣÞ

:

Thus, odd product-moments are also zero, whereas even product-moments can be computed symbolically by Kan (2008)'s
procedure and MATLAB function, however, adjusted for E½Wn=2�.

Analytical derivatives: For analytical derivatives with respect to the model parameters θ, we first collect all auxiliary
parameters for ~Mk; ~ξ symbolically in a vector θaux and store the symbolic Jacobians

∂ ~Mk; ~ξ

∂θaux
0 into script files. In the Gaussian case

θaux ¼ vechðΣ 0Þ; vechðΣxÞ
� �0, whereas in the Student's t case θaux ¼ vechðΣÞ0; vechðΣxÞ; v

� �0. Since ∂θaux

∂θ0 is given by the model, we
can evaluate the script files numerically given the identity

∂ ~Mk; ~ξ

∂θaux
0 � ∂θaux∂θ0 :

Appendix C. Using generalized Sylvester equations for cumulants

The zero-lag cumulants

Ck;z ¼ ðInk
z
�½�k

j ¼ 1A�Þ�1 � ½�k
j ¼ 1B� � Γk;ξ

require the inversion of the matrix Inkz �½�k
j ¼ 1A�

� �
. Since Ck;z and Γk;ξ are vectors, we can use properties of the Kronecker

product and rewrite the equations to

½ C2;z
nz�nz

� ¼ A½ C2;z
nz�nz

�A0 þB½Γ2;ξ
nξ�nξ

�B0;

½ C3;z
n2
z�nz

� ¼ ðA � AÞ½ C3;z
n2
z�nz

�A0 þðB � BÞ½Γ3;ξ
n2
ξ
�nξ

�B0;

½ C4;z
n2
z�n2

z

� ¼ ðA � AÞ½ C4;z
n2
z�n2

z

�ðA � AÞ0 þðB � BÞ½Γ4;ξ
n2
ξ
�n2

ξ

�ðB � BÞ0;

where ½
n�m

� reshapes a n �m vector into a n�m matrix. In other words, we reduce the inversion problem to a generalized

Sylvester equation, which can be efficiently solved.
To compute the analytical derivatives of Ck;z, we also use generalized Sylvester equations, an idea similar to Ratto and

Iskrev (2012). That is, we take for each θi the differential

d½ C2;z
nz�nz

��A � d½ C2;z
nz�nz

� � A¼ dA½ C2;z
nz�nz

�A0 þA½ C2;z
nz�nz

�ðdA0ÞþdðB½Γ2;ξ
nξ�nξ

�B0Þ;

d½ C3;z
n2z�nz

��ðA � AÞ � d½ C2;z
n2
z�nz

� � A0 ¼ dðA � AÞ � ½ C3;z
n2
z�nz

� � A0 þðA � AÞ½ C3;z
n2
z�nz

� � ðdA0ÞþdððB � BÞ½Γ3;ξ
n2
ξ
�nξ

�B0�;

d½ C4;z
n2z�n2z

��ðA � AÞ � d½ C4;z
n2
z�n2

z

� � ðA � AÞ0 ¼ dðA � AÞ � ½ C4;z
n2
z�n2

z

� � ðA � AÞ0 þðA � AÞ½ C4;z
n2
z�n2

z

� � dðA0 � A0ÞþdððB � BÞ½Γ4;ξ
n2
ξ
�n2

ξ

�ðB0 � B0ÞÞ;

which are also generalized Sylvester equations in the differential on the left-hand side. Note that, contrary to the rest of the
paper, here we use as notation dX ¼ ∂X

∂θi
to denote the derivative of X w.r.t. to a specific θi (i¼ 1;…;nθ) which has the same

shape as X. All terms on the right-hand side can be derived using the expressions and theorems of Section 5.

Appendix D. Example for notation and index matrices

When separating matrices and especially Jacobians into states and shocks, we use index matrices to keep track of the
corresponding positions of terms. For illustration, consider only the transition of states with nx¼2 and nu¼1. For i, j¼1, 2
denote hj

xi≔
∂hjðx1 ;x2 ;0Þ

∂xi;t � 1
, hjxiu≔

∂2hjðx1 ;x2 ;0Þ
∂xi;t � 1∂ut

, where j corresponds to the jth row of hv. Similar notation applies for hju;h
j
uxi ;h

j
xiu and hjuu.

The solution matrices for states are given by

hv ¼
h1x1 h1x2 h1u

h2x1 h2x2 h2u
0 0 0

2
664

3
775; hvv ¼

h1x1x1 h1x1x2 h1x1u

h1x2x1 h1x2x2 h1x2u

h1ux1 h1ux2 h1uu

h2x1x1 h2x1x2 h2x1u

h2x2x1 h2x2x2 h2x2u

h2ux1 h2ux2 h2uu
0 0 0
0 0 0
0 0 0

2
66666666666666666664

3
77777777777777777775

:
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In order to use notation of Andreasen et al. (2014) we get rid of the zeros and reshape and permute these matrices to get

Hxx ¼
h1x1x1 h1x2x1 h1x1x2 h1x2x2
h2x1x1 h2x2x1 h2x1x2 h2x2x2

2
4

3
5; Hxu ¼

h1x1u h1x2u

h2x1u h2x2u

2
4

3
5; Hux ¼

h1ux1 h1ux2
h2ux1 h2ux2

2
4

3
5; Huu ¼

h1uu
h2uu

2
4

3
5

This can be accomplished by using the following matrices indicating the positions in hvv:

idxHxx ¼
1 2 10 11
4 5 13 14

	 

; idxHuu ¼

21
24

	 

idxHxu ¼

19 20
22 23

	 

; idxHux ¼

3 12
6 15

	 


That is, in order to compute e.g. Hxx we simply select the corresponding terms from hvv using idxHxx . Since we now know the
exact positions, we are further able to select the correct rows of dhvv to compute dHxx.

Appendix E. Auxiliary solution matrices and auxiliary analytical derivatives

Let nv ¼ nxþnu;n¼ nvþny and

gv ¼ gx gu
� �

; hv ¼
hx hu

0nu�nx 0nu�nu

 !

then the auxiliary solution matrices are given by

Q ¼ h0v � f 2 � h0vþ Inv � f 4 � Inv Inv � ðf 1 � Inv þ f 2gv � Inv Þ
� �

;

R¼ ðIn � M0ÞHM; S¼ f 1þ f 2gv f 2þ f 4
� �

;

U ¼ f 2trm ðIny � ð ~η ~η 0ÞÞgvv
� �þtrm ðIn � N0ÞHNð ~η ~η 0Þ� �

;

M¼

hv
gvhv
Inv
gv

2
66664

3
77775; N¼

Inv
gv

0n�nv

2
64

3
75; ~η ¼

0nx�nu

η

 !

and trm defines the matrix trace of an nm� n matrix ½Y 0
1Y

0
2:::Y

0
m�0 as the m� 1 vector ½trðY1ÞtrðY2Þ:::trðYmÞ�0.

Derivative of Q�1: Notice that Q is partitioned into Q ¼ ½Q1Q2�:
Q1 ¼ h0v � f 2 � h0vþ Inv � f 4 � Inv ;Q2 ¼ Inv � ðf 1þ f 2gvÞ � Inv :

Deriving dðf 2gvÞ using Theorem 1 and mechanically applying Theorem 2 repeatedly, we obtain the derivatives dQ1 and dQ2.
Now we can use Algorithm 1 to compute dQ . However, we are interested in dQ �1, thus in step 2(b) we also compute the
derivative of the inverse using �Q �1 ½dQi

1� ½dQi
2�

h i
Q �1 (Magnus and Neudecker, 1999, p. 184) and store it in step 2(c) in the

ith column of dðQ �1Þ.
Derivative of R: Regarding the derivative of R we first have to derive dM. This can be done in the same fashion, since M is

partitioned into M¼ ðhv; gvhv; Inv ; gvÞ0. dhv and dgv are known, whereas dðgvhvÞ can be derived using Theorem 1. Applying
Algorithm 1 we get dM, whereas for the transpose we have the following relationship dM0 ¼ K2ðnx þnyÞ;nxdM. Now we are able
to compute the derivative of R using Theorems 1 and 2.

Derivative of S�1: Since S is similarly partitioned as Q, i.e. S¼ ½S1; S2�, the derivative dðS�1Þ can be calculated analogously
to dðQ �1Þ.

Derivative of T: T is the sum of two matrices, for which we will derive the derivatives separately. Consider the first part,
f 2 � trm ½ðIny � ð ~η ~η 0ÞÞgvv�. Since the derivatives of ð ~η ~η 0Þ and gvv are known, it is straightforward to compute dððIny � ð ~η ~η 0ÞÞgvvÞ
applying Theorems 1 and 2. The only slightly difficult part is the matrix trace function. However, Algorithm 1 can be used to
overcome this difficulty. In fact, we only have one partition, for which we know the derivative. Now taking the trm of the
reshaped matrix in step 2(b) and storing this in step 2(c), we get dðtrm ½ðIny � ð ~η ~η0ÞÞgvv�Þ. Theorem 1 then yields the
derivative of f 2 � trm ½ðIny � ð ~η ~η 0ÞÞgvv�. The same steps can be used to derive the derivative of the second part,
trm ½ðIn � N0ÞHNð ~η ~η 0Þ�. However, we first have to derive an expression for dN and dN0. Since N is partitioned, we can use
Algorithm 1 to compute dN and dN0 ¼ K2n;nvdN.

Derivative of HξðzÞ: HξðzÞ is given by DþCðz � Inz �AÞ�1B with z¼ e� iωAC. Closed form expressions for dA, dB, dC and dD
are given in Section 5 using Algorithm 1 for partitioned matrices. Thus, we only need the derivative of the inverted
expression which is given by

d ðzInz �AÞ�1
� �

¼ �ðzInz �AÞ0�1 � ðzInz �AÞ�1
� �

ð�dAÞ
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where we used dðX�1Þ ¼ ð�ðX0Þ�1 � X�1ÞdX, see Magnus and Neudecker (1999, p. 184). Thus, computing dHξ is a
straightforward application of Theorem 1. The derivative of the conjugate transpose is given by dHn

ξðzÞ ¼ Kny ;nξconjðdHξðzÞÞ,
where conj returns the complex conjugate.
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