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A B S T R A C T

The decisions a researcher makes at the model building stage are crucial for parameter identification. This paper
contains a number of applied tips for solving identifiability problems and improving the strength of DSGE model
parameter identification by fine-tuning the (1) choice of observables, (2) functional specifications, (3) model
features and (4) choice of structural shocks. We offer a formal approach based on well-established diagnostics and
indicators to uncover and address both theoretical (yes/no) identifiability issues and weak identification from a
Bayesian perspective. The concepts are illustrated by two exemplary models that demonstrate the identification
properties of different investment adjustment cost specifications and output-gap definitions. Our results provide
theoretical support for the use of growth adjustment costs, investment-specific technology, and partial inflation
indexation.

1. Introduction

Dynamic stochastic general equilibrium (DSGE) models have
become a major toolkit for empirical macroeconomic research and an
important policy tool used in central banks. These models are firmly
rooted in economic theory and can be derived mathematically by solv-
ing dynamic stochastic optimization problems with well-defined objec-
tive functions of the various agents (i.e. individuals, firms, financial
intermediaries, fiscal and monetary authorities) as well as resource con-
straints. Many methods for solving and estimating DSGE models have
been developed and used in order to obtain a detailed analysis and
thorough estimation of dynamic macroeconomic relationships, see e.g.
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Fernández-Villaverde et al. (2016) for an overview. Recently, the ques-
tion of identification of the parameters in DSGE models has proven to
be of major importance, especially since identifiability precedes (con-
sistent) estimation and inference of an unknown parameter vector from
data. Parameter identification is a model property and can be analyzed
by readily available diagnostic tools before actually taking a model to
data. Canova and Sala (2009, p. 448) argue, however, that “DSGE mod-
els have never being built with an eye to the identification of their
parameters”. This paper can be interpreted as following up on their sug-
gestion. We advocate to assess parameter identification from a model
building perspective, as this provides a better understanding of the eco-
nomic forces behind an identification result and, ultimately, behind the
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dynamics of the model before estimating it. To this end, we offer (1)
a formal approach by using well-established diagnostics and indicators
and (2) a set of applied tips on how to solve theoretical identification
failures and improve the strength of DSGE model parameter identifi-
cation by fine-tuning the functional specifications, model features and
selection of observed variables and structural shocks.

Before we state the parameter identification problem formally, we
briefly introduce our two example models to illustrate the problems
at hand in a nontechnical way. The first example is taken from Kim
(2003), who augments the canonical RBC model with both intertem-
poral and multisectoral investment adjustment costs. He then ana-
lytically shows that the two adjustment cost parameters, 𝜃 and 𝜅,
enter the linearized solution only through a composite parameter,
𝜃+𝜅
1+𝜃 , implying that they cannot be identified separately. We show
how to solve this theoretical lack of identification by looking at (1)
the selection of observed variables, (2) the functional specification of
intertemporal adjustment costs, (3) additional model features like a
cost on capital utilization and (4) additional structural shocks, namely
an investment-specific technological innovation. Our second example
is An and Schorfheide (2007), who consider a standard log-linearized
New Keynesian model with government spending. Without going into
the technical details yet, we already like to point out some obvi-
ous and non-obvious identification issues for illustrative purposes,
as these are commonly shared by many other New Keynesian mod-
els. First, some steady state parameters, like steady state government
spending or average technology, drop out from the linearized solu-
tion, so there is no way to make inference about them. Adding addi-
tional (e.g. measurement) equations may solve some of these issues
but not all. Second, a common problem among linearized New Key-
nesian models is that there is an infinite number of combinations
of the elasticity of demand, 1∕𝜈, and price stickiness parameter, 𝜑,
which yield the exact same value for the slope 𝜅 of the New Keyne-
sian Phillips curve. Hence, most empirical studies estimate 𝜅 instead.
Third, the Taylor rule parameters are jointly not identifiable. For exam-
ple, Qu and Tkachenko (2012, Table 1) show that the parameter com-
bination (𝜓𝜋,𝜓y, 𝜌R, 𝜎

2
R) = (1.572,0.001,0.742,0.391) yields the exact

same model dynamics, moments and impulse responses as the param-
eter combination (𝜓𝜋,𝜓y, 𝜌R, 𝜎

2
R) = (0.992,1.007,0.796,0.451), where

𝜓𝜋 is the sensitivity to deviations of inflation from its target, 𝜓y the
sensitivity of the output-gap, 𝜌R the persistence of the Taylor rule and
𝜎R the standard deviation of the monetary policy shock. Economically,
this is a severe problem – especially for policy makers – as the first
parametrization corresponds to a (hawkish) rule that responds only
to inflation deviations, whereas the second parametrization mimics a
(dovish) rule where the monetary authority balances its response due
to deviations from both the inflation target and potential output. We
show means to solve this theoretical lack of identification by looking at
(1) the set of observed variables, (2) the functional specification of the
output-gap, (3) additional model features like partial inflation indexa-
tion and (4) additional structural shocks, namely a preference shock on
the discount factor.

Of course, uncovering such issues is not an easy task as analytical
results are rarely available and feasible. But, there are several diag-
nostic tools which can help a researcher assess parameter identifica-
tion. Nevertheless, even if parameters are theoretically identified, weak
identification is a serious concern for applied macroeconomists. Identi-
fiability, in this sense, is an empirical property dependent on the sample
size. Therefore, this paper is also concerned with the sensitivity of fine-
tuning model features on the strength of identification from a Bayesian
point of view, as this has become the leading estimation paradigm in
the literature. We aim to provide a practitioner’s point of view on the
complexities of assessing parameter identification in linearized DSGE
models and make the available toolkit more accessible to a broader
audience. Our research feeds into the ongoing development of the iden-
tification toolbox of Dynare (Adjemian et al., 2011), a widely used soft-
ware platform to analyze, solve and estimate a wide class of economic

models, such that our findings can be easily replicated and adapted to
other models and needs. The replication files are available in a GitHub
repository from the corresponding author, whereas our methodological
contributions are already merged into Dynare’s 4.6-unstable branch.

In section 2, we state the identification problem formally and the
economic and econometric implications for DSGE models in more
detail. We summarize our implementation of the used tools and provide
guidance to uncover identifiability issues from an applied perspective in
section 3. The fine-tuning of identification properties of the investment
adjustment costs model is given in section 4, whereas section 5 pro-
vides the corresponding analysis for the monetary model. In section 6,
we discuss the general implications of our results from a model building
perspective and their relation to the current literature. Lastly, section 7
concludes.

2. The identification problem in DSGE models

Let 𝜽 ∈ 𝚯 denote the (unknown) vector of model parameters, where
𝚯 is the admissible parameter space that yields a unique and stable
solution, and YT the matrix of observable variables with sample size
T. Further, p(𝜽;YT ) denotes an objective function generated by a DSGE
model, e.g. a probability distribution, likelihood, posterior or moment’s
distance. Following Rothenberg (1971),1 𝜽 is said to be locally identifi-
able from p at a point 𝜽0 ∈ 𝚯, if there exists an open neighborhood of 𝜽0
in which p(𝜽0;YT ) = p(𝜽1;YT ) implies 𝜽0 = 𝜽1 for all YT . The local
point 𝜽0 usually corresponds to calibrated values, the maximum likeli-
hood or minimal distance estimate, or the prior or posterior mean. In
other words, identification problems arise if distinct parameter values
do not lead to distinct objective functions of data, i.e. p(𝜽;YT ) needs to
be uniquely determined (in the injective sense) by 𝜽0. Even with an infi-
nite sample, T → ∞, it is not possible to pin down some (sets of) param-
eters, no matter what estimation procedure one uses. We refer to this as
the theoretical lack of identification. By contrast, we are also concerned
with the empirical strength of identification, i.e. how much information
can be extracted from a specific YT to estimate model parameters. That
is, even though all parameters enter the objective function separately
and it has a unique extremum, its curvature may be small in certain
regions of the parameter space, especially in small samples. We refer to
this as weak identification. The literature is also concerned with global
identification; however, it is numerically much more difficult to verify
than local identification and therefore beyond the applied scope of this
paper.2

From an economic point of view, lack of identification leads to
wrong conclusions from calibration, estimation and inference (Canova
and Sala, 2009), whereas the source of identification influences empir-
ical findings (Ríos-Rull et al., 2012). From an econometric point of
view, parameter identification belongs to the usual regularity condi-
tions of commonly used estimators, e.g. the asymptotic theory of maxi-
mum likelihood requires local identification (Wald, 1949), whereas for
the large sample properties of the generalized method of moments it
is a necessary (but not sufficient) condition (Hansen, 1982). Accord-
ingly, in a full-information setting this often evokes a badly shaped
likelihood function with relatively flat regions, which modern Bayesian
estimation can conveniently circumvent by using tight priors. The com-
mon notion, however, that “unidentifiability causes no real difficulties
in the Bayesian approach” (Lindley, 1971, p. 46) is misleading and

1 We refer to Aldrich (2002) for a historical overview of definitions of identi-
fiability, especially in the Bayesian context.

2 Qu and Tkachenko (2017) provide an algorithm that focuses on minimizing
the Kullback-Leibler discrepancy from a frequency domain perspective, whereas
Kocicecki and Kolasa (2018) exploit the link between observationally equiva-
lent state space representations and the inherent constraints imposed by the
model solution. Both approaches are computationally challenging and require
a lot of fine-tuning. A model-independent implementation into Dynare is left
for future research.
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“it is necessary to clear up the ground from misunderstandings that
may be detrimental for the methodology as a whole” (Canova, 2007, p.
191). In a nutshell, if parameters are not identifiable, the prior becomes
extremely influential and needs to be informative for a proper posterior
distribution. Moreover, in the case of prior dependence the comparison
of prior and posterior for non-identified parameters can be misleading
(Koop et al., 2013; Poirier, 1998) and may overstate the informative-
ness of the data about the parameters. Likewise, calibrating unidenti-
fied parameters can lead to wrong conclusions, since other parameters
might depend on the calibrated ones, see Canova and Sala (2009) for
an example.

Weak identification is likely to be a more serious concern for applied
researchers. Accordingly, experience shows that it is quite difficult –
both for Frequentists as well as Bayesians – to maximize the likeli-
hood/posterior or minimize some (moment) distance function, because
these functions are typically not well behaved and one has to deal with
multiple local extrema, weak curvature in some directions of the param-
eter space and ridges. The evaluation of first-order and second-order
derivatives is intractable and gradient based optimization methods per-
form quite poorly (Andreasen, 2010). The resulting estimators either
hardly differ from initial values or may often lie on the boundary of
the theoretically admissible parameter space which makes conventional
Gaussian asymptotics a poor approximation to the true sampling dis-
tribution. In many cases the source of these peculiar outcomes is due
to identifiability issues or an unfortunate choice of observables (Guer-
ron-Quintana, 2010). Therefore, it is important to understand identi-
fication as a model property and check its sensitivity before taking a
model to the data.

3. Implementation of identification checks

We are concerned with linearized DSGE models, i.e. we use first-
order perturbation techniques to approximate the solution of a DSGE
model as explained in Villemot (2011). We then carefully check the
rank criteria of local identification of Iskrev (2010), Komunjer and Ng
(2011) and Qu and Tkachenko (2012) for all considered model variants
and sets of observables with Dynare. These three methods are the most
basic and the closest to ideas from the early work on identification in
systems of linear equations, since they are based on the uniqueness of
a solution in the fashion of Rothenberg (1971). Identifiability, in this
sense, is a theoretical property which can be analyzed before seeing
any data. Regarding the strength of identification we follow Koop et al.
(2013) who derive a Bayesian learning rate indicator to assess whether a
parameter is strongly or weakly identifiable (and estimable). We now
outline our implementation of the diagnostics and tools and elaborate
on our method to select observable variables in more detail.

3.1. Rank checks

Iskrev (2010)’s approach to detect non-identified parameters is
based on observational equivalent moments, i.e. to check whether the
mapping from the parameter vector 𝜽 to the vector of theoretical first
two moments (mean and autocovariances) is injective. In practice, a
researcher needs to select the number of lags in the autocovariances (or
autocorrelations). According to Ratto and Iskrev (2011), it suffices to
check the rank condition for a small number of lags q, since the Jaco-
bian is likely to have full rank for q much smaller than T. In most prac-
tical cases, q between 10 and 30 will be sufficient. A good candidate
to try first is the smallest q for which the order condition is satisfied,
and then increase the number of moments if the rank condition fails. To
ease the computation of the rank, we advise to normalize the Jacobian
by re-scaling each row by its largest element in absolute value.

Qu and Tkachenko (2012)’s approach focuses on observational
equivalent spectral properties, i.e. on the sensitivity of the theoretical
mean and spectrum of observables to changes in parameters. More pre-
cisely, the idea is to check whether the Hessian of the log-likelihood,

when expressed as the outer product of the Jacobian matrix of deriva-
tives of the spectral density with respect to 𝜽, is full rank. Their criteria
is therefore based on injectivity of the mapping from 𝜽 to the mean
and to the spectral density. In practice, a researcher needs to select
the number N of grid points in [−𝜋;𝜋] to approximate the integral of
the spectral density. Note that, if 𝜽0 is already identified from a sub-
set of frequencies (small N), it is also identified if considering the full
spectrum (N → ∞) (the converse is not true). Therefore, we recommend
starting with N = 5000 and increase N if the results are unsatisfactory.
Moreover, in the code, we exploit symmetry and focus only on [0;𝜋] to
speed up the computations. As the resulting Jacobian is a Gram-type
matrix there is no order condition. Furthermore, we advise to normal-
ize this matrix by transforming it into a correlation-type matrix with
ones on the diagonal to ease the computation of the rank.

Komunjer and Ng (2011) study the implications of observational
equivalence in minimal systems and derive a finite system of nonlinear
equations that admit a unique solution if and only if the parameters are
identified. They focus on the mapping from the model parameters to
the state space representation, however, taking into account the possi-
bility that the reduced-form parameters of the policy function may not
be identifiable. Different to the moment and spectrum condition, this
method does not require to compute the moments or spectral density
explicitly. However, we need to find the smallest possible dimension of
the state vector that is able to capture all dynamics and has the famil-
iar state-space representation. Conceptually, as DSGE models are based
upon microfoundations, this is not hard to determine for small and
medium-sized DSGE models, e.g. in the code we first remove columns
in the transition matrix that consist only of zeros and then run a brute-
force search to find the minimal state vector. However, when dealing
with auxiliary equations and variables this requires some more fine-
tuning and user input, see e.g. Komunjer and Ng (2011, appendix) for
illustrative examples. To ease the computation of the rank, we advise
to normalize the Jacobian by re-scaling each row by its largest element
in absolute value.

For all three diagnostics we need to compute a Jacobian with respect
to model parameters and check whether it has full rank. Consequently,
in the case of rank deficiency it is possible to pinpoint the (sets of)
parameters that are locally indistinguishable from one another. In our
experience, we find that the methods sometimes differ due to numer-
ical settings, numerical errors or the method used to find problematic
parameter sets. For instance, a researcher should try different toler-
ance levels to judge the robustness of the rank results. In this line of
thought, Iskrev (2010) follows an analytical closed-form approach to
compute the Jacobian of moments using Kronecker products, which is
extended in Ratto and Iskrev (2011) by making use of computation-
ally more efficient generalized Sylvester equations. Both Komunjer and
Ng (2011) and Qu and Tkachenko (2012), however, rely on numerical
methods to compute the derivatives of the minimal system and spec-
trum. Numerical differentiation is known to be very sensitive to the
thresholds and tolerance levels used, see Mutschler (2016) for exam-
ples. Therefore, we extend Dynare’s identification toolbox such that all
three criteria (moments, minimal system and spectrum) are computed
analytically and displayed by default. Under the hood, we extend ideas
from Iskrev (2010) and Ratto and Iskrev (2011) in order to establish
closed-form expressions for Komunjer and Ng (2011)’s and Qu and
Tkachenko (2012)’s Jacobians using either Kronecker products or gen-
eralized Sylvester equations. Of course, a user may also choose to com-
pute all Jacobians numerically and fine-tune the step size. In any case,
it is important to use the same derivation method to improve compara-
bility and robustness of an identification result. To pinpoint the prob-
lematic parameters that yield rank failure, the default in Dynare is to
look into the null-space of the Jacobians and evaluate multi-correlation
coefficients of the columns. Another approach, which is used in this
paper, follows Qu and Tkachenko (2012, Corollary 4). That is, we check
the rank criteria for all possible combinations of parameters in a recur-
sive fashion and mark the ones that do not pass the rank check. In
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our experience, this brute-force approach yields more reliable results
and is computationally just slightly slower, because, if we find a subset
of parameters that are not identified, we can exclude that subset from
higher-order subsets.

Our methodological contributions and improvements are already
merged into the 4.6-unstable branch, such that an applied user can
simply call the identification command on his/her model and adapt the
options discussed in this paragraph.

3.2. Bayesian learning rate indicator

Koop et al. (2013) propose an indicator for weak identification
based on the idea that the strength of identification becomes better as
more data becomes available. In other words, the more data is used, the
more precisely one can estimate a parameter, which implies shrinking
posterior variances. This insight can be used to derive an indicator, that
looks at the average posterior precision of the parameters, i.e. the inverse
of the posterior variance divided by the sample size T. They show that
the posterior precision should increase at a rate of T for strongly identi-
fied parameters, whereas for weakly identified parameters it increases
at a slower rate. Therefore, the average posterior precision of a strongly
identified parameter should tend to a constant, whereas for a weakly
identified parameter it is heading towards zero.

We generate one artificial dataset of 50,000 observations and then
use Dynare to estimate the parameters with Bayesian MCMC methods
using the first T = 100, 300, 900, 2700 and 8100 of the simulated
observations. Then, on the one hand, we follow the approach in Chadha
and Shibayama (2018) and compute the average posterior precision by
taking the inverse of the product of the posterior variance times T and
examine if it converges to a constant, suggesting the posterior precision
is updated at the same rate as T. On the other hand, we also compute
convergence ratios as in Kamber et al. (2016); that is, we compare the
ratio of two subsequent estimated posterior precision values, e.g. at
T = 100 and T = 300, and check whether this ratio is close to the rate
at which T increases, i.e. close to 300/100 = 3.

Regarding the implementation, we heavily exploit Dynare’s macro
language and preprocessing capabilities to loop over sample sizes
and fine-tune the estimation commands for the different model vari-
ants. Following common practice, we use a Random-Walk Metropolis-
Hastings sampling algorithm based on four Markov chains with each
1,000,000 draws, half are being discarded as burn-in draws in each
chain. The mode and Hessian evaluated at the mode (computed by
Dynare’s mode_compute = 4, i.e. Chris Sims’s CSMINWEL) are used to
determine the initial Gaussian proposal density with scale parameter
set such that the acceptance ratios lie in between 20% and 35%. In
some cases, we use an advanced mode finding procedure, where we
sequentially loop over different optimization algorithms taking the pre-
vious found mode as initial value for the next optimizer. In particular,
we loop, in this order, over Dynare’s mode_compute values equal to
9 (CMA-ES), 8 (Nelson-Mead Simplex), 4 (csminwel), 7 (fminsearch)
and 1 (fmincon). We then rely on Dynare’s (very time-consuming)
mode_compute = 6 optimizer, i.e. a “Monte Carlo Optimizer” to get a
well-behaved Hessian in the relevant parameter space. The intuition
is that the Metropolis-Hastings algorithm does not need to start from
the posterior mode to converge to the posterior distribution. It is only
required to start from a point with a high posterior density value and
to use an estimate of the covariance matrix for the jumping distribution
(actually any positive definite matrix suffices).3 All estimation results

3 The replication files of An and Schorfheide (2007) reveal that they face the
same problem in their estimation and overcome this by using different step
sizes for the numerical evaluation of second derivatives of the log-likelihood
function. Other common “tricks” to overcome a singular Hessian are to decom-
pose the Hessian, set the eigenvalues smaller than or equal zero to some small
number, and then recompose it. We thank Johannes Pfeifer for pointing this
out.

and convergence diagnostics are available in the replication files.

3.3. Selection of observables

Ideally, economic intuition dictates the selection of observables that
reveal the most useful information about the parameters of interest.
For example, in models with monetary neutrality, we know that nomi-
nal variables have no real effects, so this needs to be taken into account
when selecting observable variables. Similarly, Martínez-García et al.
(2012) find that observing the terms of trade improves the strength
of identification in an open economy model. Likewise, Andreasen and
Dang (2019) show that the price demand elasticity can be estimated
reliably in a standard log-linearized version of the New Keynesian
model when including firm profit as an observable in the estimation.
However, Canova et al. (2014) warn that there are important trade-offs
when deciding to use hours or labor productivity together with output
among the observables in a variant of the Smets and Wouters (2007)
model. They caution that different combinations of variables may pro-
duce different responses to shocks. A point echoed by Martínez-García
et al. (2012) and Martínez-García and Wynne (2014) who additionally
raise the issue of data availability limitations in practice.

So, unfortunately, there is no general guideline on selecting observ-
ables, as one needs to experiment with a number of possible and feasible
combinations of variables. Therefore, in our exercise, we are agnostic
and use a brute-force approach, i.e. we check all three diagnostics for
all possible combinations of observable variables. This basically mim-
ics Canova et al. (2014), who select observables in a way that opti-
mizes parameter identification according to Komunjer and Ng (2011)’s
rank criteria. As outlined above, this diagnostic is not always available;
hence, we also optimize along the lines of Iskrev (2010)’s moment and
Qu and Tkachenko (2012)’s spectrum rank criteria for a robust compari-
son. After having established which sets of observables are theoretically
favored in terms of local identification, we then use economic hindsight
to choose feasible sets and run the identification strength indicator on
these.

4. Investment adjustment costs model

4.1. Model description

The Kim (2003) model is a variant of the canonical Real Busi-
ness Cycle model with log utility extended by two kinds of invest-
ment adjustment costs. First, multisectoral adjustment costs, governed by
a parameter 𝜃, enter the budget constraint:[
(1 − SAV)

(
Ct

1 − SAV

)1+𝜃
+ SAV

(
It

SAV

)1+𝜃] 1
1+𝜃

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≔Yd

t

= RK
t UK

t Kt−1 −ΨK
t Kt−1 (1)

where Ct is consumption, It is investment and SAV = I
Yd denotes the

steady state savings rate. Similar to Huffman and Wynne (1999) we
focus on 𝜃 > 0, i.e. a reverse CES technology, in order for the produc-
tion possibilities set to be convex. Note that for 𝜃 = 0 the transfor-
mation reduces to the standard linear case, i.e. demand Yd

t is equal to
consumption and investment. Different to Kim (2003), we introduce a
cost, ΨK

t , of capital utilization per unit of physical capital. UK
t denotes

the capital utilization rate and we use the following functional form:
ΨK

t = (1 − 𝜓K)(UK
t − UK) + 𝜓K

2 (UK
t − UK)2, such that the usual steady

state normalization, ΨK″
∕ΨK′

= 𝜓K∕(1− 𝜓K), applies. Physical (end-
of-period) capital, Kt , is transformed into effective (end-of-period) cap-
ital, Ks

t , according to Ks
t−1 = UK

t Kt−1. Effective capital is then rented
to the representative firm at the gross rental rate RK

t . The firm pro-
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duces a homogeneous good using a Cobb-Douglas production function,
Yt = At(Ks

t−1)
𝛼 , where At denotes total factor productivity.

Second, intertemporal adjustment costs, governed by a parameter 𝜅,
are introduced into the capital accumulation equation, which involve
a nonlinear substitution between the capital stock and investment. We
consider two different specifications for this friction:

Kt =
[
(1 − 𝛿)K1−𝜅

t−1 + 𝛿
(
𝜐t It
𝛿

)1−𝜅] 1
1−𝜅

(2a)

Kt = (1 − 𝛿)Kt−1 + 𝜐t It
(

1 − S
(

It
It−1

))
(2b)

where 𝛿 denotes the depreciation rate and we set St ≔ S
(

It
It−1

)
=

𝜅
2

(
It

It−1
− 1

)2
, such that the usual steady state normalization,

St(1) = 0, S′t(1) = 0 and S″t (1) > 0, applies. Equation (2a), which we
call the LEVEL specification, is also used by Kim (2003). It is based
on Lucas and Prescott (1971) and involves costs in terms of the first
derivative of capital or, in other words, on the current level of invest-
ment. Equation (2b), which we call the GROWTH specification, is based
on Christiano et al. (2005) and involves costs in terms of investment
changes between periods. Note that for 𝜅 = 0 we get the usual lin-
ear capital accumulation specification, i.e. Kt = (1 − 𝛿)Kt−1 + 𝜐t It , in
both cases. Different to Kim (2003), we introduce investment-specific
technological change, 𝜐t , in the fashion of Greenwood et al. (2000)
and Justiniano et al. (2010). Both the log of At and the log of 𝜐t
evolve according to AR(1) processes with persistence 𝜌j and additive
shocks, 𝜀j,t , which are assumed to be normally distributed with zero
mean and standard deviation 𝜎j (j = A, 𝜐). The model equations are
summarized in Table 1, where 𝛽 = 1∕(1 + RA∕400) and Λt and
ΛtQt denote the Lagrange multipliers corresponding to equations (1)
and (2) respectively. The upper parts of the equations correspond to
the LEVEL specification of intertemporal investment adjustment costs,
whereas the lower parts are associated with the GROWTH specifica-
tion. The steady state is given by normalizations, A = Q = 𝜐 = 1,

and equations RK = (1 −𝜓K ) =
(

1
𝛽
+ 𝛿 − 1

)
Q

UK , K =
(
𝛼A
RK

) 1
1−𝛼 , I = 𝛿K

𝜐
,

Y = AK𝛼 , C = (1 − SAV)Y and Λ = C−1. The calibration of 𝛼, 𝛽 and
𝛿 is based on a steady state investment to output ratio, I∕Y, of 0.25, a
steady state capital productivity, K∕Y, of 10 and an annualized steady
state interest rate, RA, of 2. 𝜓K is implicitly defined via the first order
necessary conditions with respect to Kt and UK

t . 𝜃 and 𝜅 are based on
values taken from Ratto and Iskrev (2011), whereas the parameters
of the stochastic processes are chosen symmetrically with mild persis-
tence and amplitude of shocks. The calibration and prior specification
of parameters is summarized in Table 2.

4.2. Model variants

To check the sensitivity of local identifiability to changes in observ-
ables, model assumptions, functional specifications and shocks, we dis-
tinguish three different model scenarios and consider all possible one-
and two-set combinations of model variables as observables. Our focus
lies on observable variables that are commonly used in the literature;
namely, output, consumption, investment and the return of capital.4
Our first scenario, called BASELINE, corresponds to the original model

4 For the sake of completeness, we also analyze (usually unobserved) vari-
ables like technology, capital or the auxiliary Lagrange multipliers. We like to
point out that by observing marginal utility Λt or Tobin’s Qt combined with any
other variable, one is able to locally identify all model parameters independent
of the specification of intertemporal investment adjustment costs or model sce-
nario. Observing capital or technology, on the other hand, does not solve the
lack of identification in the considered scenarios. The exact results can be found
in the replication files.

specification of Kim (2003). Accordingly, we switch off both capital
utilization and investment-specific technological change. In our sec-
ond scenario, called CAPITAL UTILIZATION, we analyze the effect on
local identification of adding capital utilization costs to the BASELINE
scenario. Likewise, in our third scenario, called INVESTMENT SHOCK,
we add investment-specific technological change to the BASELINE case.
Note that in the first two scenarios there is only one structural shock in
the model, whereas in the last scenario there are two. Lastly, each sce-
nario is run with either the LEVEL or GROWTH specification of intertem-
poral investment adjustment costs. The following sensitivity analysis of
identification as a model property is based on the calibrated local point
𝜽0 given in the second column of Table 2. The replication files also con-
tain the local identifiability analysis for the prior mean as well as 100
random draws from the prior domain. As the results are almost iden-
tical for all model variants, we focus on the calibrated values in our
exposition.

4.3. Theoretical identification

Table 3 summarizes whether the required rank conditions are ful-
filled for the different scenarios and combinations of observable vari-
ables at 𝜽0. As expected and analytically shown by Kim (2003), 𝜃 and
𝜅 cannot be identified jointly in the BASELINE scenario with the LEVEL
specification. The GROWTH specification, however, allows one to iden-
tify these parameters for many choices of feasible observable variables.
In particular, among single observable variables, consumption Ct (and
not output Yt) yields a locally fully identified model. Intuitively, the
GROWTH specification adds another state variable into the model in
terms of lagged investment. The coefficients of lagged investment in the
decision rules depend on the intertemporal adjustment costs parameter
𝜅 in a manner that is distinct from the multisectoral adjustment costs
parameter 𝜃. Hence, we can distinguish the dynamics of multisectoral
level adjustment costs from intertemporal growth adjustment costs. Our
other two scenarios, CAPITAL UTILIZATION and INVESTMENT SHOCK, indi-
vidually introduce sufficient internal dynamics into the optimal alloca-
tion of investment and capital. These features tend to smooth the adjust-
ment of the rental rate of capital, and therefore, enhance identifiability
of adjustment cost parameters 𝜅 and 𝜃. Almost all pairs of variables
yield full rank in these scenarios, independent of whether we consider
the LEVEL or the GROWTH specification. Note that single observable vari-
ables fail to identify all model parameters as 𝜅 and 𝜃 are co-linear with
either the capital utilization or the investment shock process parame-
ters.

Moreover, in the replication files we also consider the effect of a dif-
ferent utility function, internal or external habit, labor choice and mon-
etary policy rules on parameter identification of 𝜃 and 𝜅. We briefly
summarize our findings. A CRRA utility function or the inclusion of
internal/external habit formation does not change the above results.5
The inclusion of labor (as already shown by Kim (2003)) facilitates
parameter identification of 𝜃 and 𝜅 in both cases, but adds other param-
eters that can only be identified by observing either hours or wages.
Extending the BASELINE model with respect to bond holdings requires
the inclusion of a Taylor rule. This also provides means for identify-
ing the investment adjustment costs parameters in both the LEVEL and
GROWTH specification, however, for several combinations of observ-
ables the parameters of the monetary rule are not identified, a topic
we study in more detail in section 5.

4.4. Weak identification

Tables 4 and 5 provide insight into the strength of identification

5 In some cases we find that the identification criteria yield different results.
We experimented with the settings and found that the differences are driven
by numerical thresholds, tolerance levels and the method used to normalize the
Jacobians for rank computations.
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Table 1
Model equations of investment adjustment costs model.(

Ct
(1−SAV)·Yd

t

)𝜃

Λt = C−1
t

(
It

SAV·Yd
t

)𝜃
Λt =

⎧⎪⎪⎨⎪⎪⎩
ΛtQt

(
𝛿Kt
𝜐t It

)𝜅

ΛtQt

(
1 − St −

(
It

It−1

)
S′t

)
𝜐t + 𝛽Et

[
Λt+1Qt+1𝜐t+1

(
It+1
It

)2

S′t+1

]

ΛtQt =
⎧⎪⎨⎪⎩
𝛽Et

[
Λt+1

(
RK

t+1UK
t+1 −ΨK

t+1 + (1 − 𝛿)Qt+1

(
Kt+1
Kt

)𝜅)]
𝛽Et

[
Λt+1

(
RK

t+1UK
t+1 −ΨK

t+1 + (1 − 𝛿)Qt+1

)]
RK

t = ΨK′
t

RK
t = 𝛼Yt

Ks
t−1

Yt = Yd
t +ΨK

t Kt−1
log At = 𝜌A log At−1 + 𝜀A

t
log 𝜐t = 𝜌𝜐 log 𝜐t−1 + 𝜀𝜐t

Table 2
Parameters, priors and bounds for investment adjustment costs model.

Parameters Bounds Prior Specification

Symbol 𝜽0 Lower Upper Density Mean Std. deviation

𝜃 1.5 1e-8 10 Gamma 1.5 0.75
𝜅 2 1e-8 10 Gamma 2 1.5
𝛼 0.3 1e-8 0.9999 Normal 0.3 0.05
𝛿 0.025 1e-8 0.9999 Uniform 0 1
RA 2 1e-8 10 Gamma 2 0.25
𝜌A 0.5 1e-8 0.9999 Beta 0.5 0.1
𝜎A 0.6 1e-8 10 Inv Gamma 0.6 2
𝜓K 0.97 1e-8 0.9999 Uniform 0 1
𝜌𝜐 0.5 1e-8 0.9999 Beta 0.5 0.1
𝜎𝜐 0.6 1e-8 10 Inv Gamma 0.6 2

according to the Bayesian learning rate indicator of Koop et al. (2013)
for the BASELINE scenario with observable Ct and the INVESTMENT
SHOCK scenario with observable Yt and Ct . We choose these scenarios
due to the fact that our focus is on applied researchers who use Dynare
for Bayesian estimation. Accordingly, we do not analyze the strength
of identification in the CAPITAL UTILIZATION scenario as this requires
techniques to estimate singular DSGE models, which cannot be done
with Dynare out-of-the-box (yet). The simulation and estimation exer-
cise reveals that the strength of identification of the investment adjust-
ment costs parameters, 𝜃 and 𝜅, is weak in both BASELINE LEVEL and
BASELINE GROWTH scenarios as well as the INVESTMENT SHOCK LEVEL
case, since the rates at which the posterior precisions are updated are
slower than the sample size change. That is, the average posterior pre-
cision values in Table 4 tend towards zero instead of a constant value.
This is also evident by looking at the convergence ratios in Table 5 as
these stay close to 1 and do not tend towards the change in sample
size of 3. The INVESTMENT SHOCK GROWTH specification, however, is
the exception, as 𝜅 and 𝜃 are both strongly identifiable: The average
precisions tend towards a constant and the convergence ratios fluctu-
ate around 3. Regarding the other model parameters we find mixed
results. In all cases under consideration the strength of identification
of RA (and hence 𝛽) is weak, which is a common finding in the lit-
erature (Morris, 2017). In the (unidentified) BASELINE LEVEL scenario
we see that only 𝜌A is strongly identifiable. This confirms that estimat-
ing non-identified models yields severe problems in the estimation of
other, actually identified model parameters. Accordingly, in the (iden-
tified) BASELINE GROWTH scenario 𝛼, 𝛿, 𝜌A and 𝜎A are (more or less)
strongly identified. Likewise, the GROWTH specification in the INVEST-
MENT SHOCK scenario performs better than the LEVEL one as the conver-
gence ratios are closer to 3.

4.5. Summary

To sum up, in all our experiments we find that the GROWTH speci-
fication of intertemporal investment adjustment costs is superior to the
LEVEL specification in terms of theoretical identification. Moreover, in
the BASELINE GROWTH scenario, there is a single best choice as observ-
able: consumption (and not output or investment) is able to locally iden-
tify all parameters. Lastly, investment-specific technological change
improves the strength of model parameters. Therefore, we provide the-
oretical support (from an identification point-of-view) for using both
Christiano et al. (2005)’s GROWTH specification of investment adjust-
ment costs and Greenwood et al. (2000)’s investment-specific techno-
logical change in modern DSGE models.

5. Monetary model

5.1. Model description

The An and Schorfheide (2007) model is a prototypical New Keyne-
sian DSGE model and consists of a representative household purchasing
a basket of differentiated goods using a Dixit-Stiglitz type aggregator
and supplying homogeneous labor services. The differentiated goods
are supplied by monopolistically competitive firms using only labor ser-
vices according to a linear production function. Each firm sets prices
conforming to the Rotemberg pricing assumption such that changing
prices entails a real cost in terms of goods. Labor productivity, At ,
is the driving force of the economy and evolves according to a unit
root process, i.e. log (At∕At−1) = log (𝛾) + log (zt), where 𝛾 denotes the
steady state growth rate of the economy. Hence, yt = Yt∕At stands
for detrended output and ct = Ct∕At for detrended consumption. The
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monetary authority follows a Taylor rule for the nominal interest rate
Rt and real government spending Gt is assumed to evolve stochastically
as a ratio of output gt ≔ (1 − Gt∕Yt)−1. Uncertainty is introduced via
random fluctuations in productivity growth, government spending and
a monetary policy shock.

We extend the model in three common directions. First, we add a
preference shock, 𝜁 t , to the utility function that shifts the discount fac-
tor in the intertemporal optimization problem of the household with-
out changing the intratemporal labor supply decision. Therefore, the
detrended Lagrange multiplier corresponding to marginal consumption
utility is given by 𝜆t = 𝜁t c−𝜏t . Second, the Rotemberg price adjustment

function of the j-th intermediate firm, act(j) =
𝜑
2

(
Pt (j)

Pt−1(j)
− Γt−1

)2
yt(j),

follows either a full or a partial indexation scheme:

Γt−1 = 𝜋∗ (full indexation) (3a)

Γt−1 = 𝜋𝜄pt−1𝜋
∗1−𝜄p (partial indexation) (3b)

where 𝜋∗ denotes target inflation. The first scheme corresponds to the
original specification of An and Schorfheide (2007), whereas the sec-
ond one is in the fashion of Smets and Wouters (2007) or Born and
Pfeifer (2019). Third, we consider four different monetary policy rules
that differ in the definition of the output-gap: (i) deviation from the
output value under flexible prices but with the monopoly power dis-
tortion intact, (ii) deviation from the steady state value of output, (iii)
deviation from the growth trend and (iv) the Smets and Wouters (2007)
rule which combines (i) with differences in growth rates of output and
the flex-price output:

R∗
t ∕R =

(
𝜋t∕𝜋∗

)𝜓𝜋(yt∕y∗t
)𝜓y

(flex − price)

R∗
t ∕R =

(
𝜋t∕𝜋∗

)𝜓𝜋 (yt∕y)𝜓y (steady state) (4b)

R∗
t ∕R =

(
𝜋t∕𝜋∗

)𝜓𝜋 (zt · yt∕yt−1)𝜓y (growth) (4c)

R∗
t ∕R =

(
𝜋t∕𝜋∗

)𝜓𝜋(yt∕y∗t
)𝜓y

(
yt∕yt−1
y∗t ∕y∗t−1

)𝜓Δy

(SW) (4d)

Note that 𝜋∗ = 1 + 𝜋A∕400 is the target inflation rate and y∗t =
(1 − 𝜈)

1
𝜏 gt the output under flexible prices (𝜑 = 0) but with the

monopoly power distortion intact. All shocks, 𝜀j,t(j = R, g, z, 𝜁), are
assumed to be normally distributed with zero mean and standard devi-
ation 𝜎 j. The model equations are summarized in Table 6, where
𝛾 = 1 + 𝛾Q∕100, 𝛽 = (1 + rA∕400)−1 and we added measurement
equations for the quarterly output growth rate YGRt , the annualized
inflation rate INFLt and the annualized interest rate INTt .

The steady state is given by normalizations, z = 𝜁 = 1, 𝜋 = 𝜋
∗ ,

g = g∗ , and equations R = 𝛾z𝜋
𝛽

, c = (1 − 𝜈)
1
𝜏 , y = g · c, YGR = 𝛾Q,

INFL = 𝜋A, INT = 𝜋A + rA + 4𝛾Q . The calibration, priors and bounds
for the model parameters are summarized in Table 7 and are taken from
An and Schorfheide (2007) and Smets and Wouters (2007). Note that
a log-linearization and straightforward manipulation of equations yield
the following New Keynesian IS and Phillips curves:

ŷt − ĝt = Et[ŷt+1] − Et [̂gt+1]

− 1
𝜏

(
R̂t − Et[𝜋t+1] − Et [̂zt+1] + Et[𝜁 t+1] − 𝜁 t

)
(5)

(
𝜋 − Γ̂t−1

)
= 𝛽

(
Et[𝜋t+1] − Γ̂t

)
+ 𝜏 (1 − 𝜈)

𝜋∗2𝜈𝜑
⏟⏞⏟⏞⏟

=∶𝜅

(ŷt − ĝt) (6)

where a hat variable denotes log deviations from steady state. In the
case of full inflation indexation, Γ̂t−1 = Γ̂t = 0, the New Keynesian
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Table 4
Average posterior precisions for investment adjustment costs model.

T 𝛼 RA 𝛿 𝜌A 𝜎A 𝜃 𝜅 𝜌𝜐 𝜎𝜐

BASELINE LEVEL, OBSERVABLE [Ct ]
100 4.95629 0.16204 63.98723 2.34967 2.21339 0.01792 0.00464 – –
300 1.66085 0.05333 10.30643 1.65848 0.37558 0.00584 0.00235 – –
900 0.58057 0.01758 4.48603 1.36247 0.25473 0.00196 0.00062 – –
2700 0.21430 0.00584 2.30263 1.27458 0.15934 0.00067 0.00015 – –
8100 0.09105 0.00199 1.22613 1.32859 0.07182 0.00024 0.00004 – –

BASELINE GROWTH, OBSERVABLE [Ct ]
100 5.12340 0.15921 70.38120 2.16254 2.45120 0.01729 0.00442 – –
300 2.01095 0.05354 13.80977 1.39984 0.43133 0.00592 0.00151 – –
900 0.74712 0.01764 6.19138 0.81634 0.25277 0.00198 0.00042 – –
2700 0.32316 0.00599 3.50164 0.58203 0.19985 0.00071 0.00018 – –
8100 0.20646 0.00197 3.64481 0.38089 0.10312 0.00021 0.00007 – –

INVESTMENT SHOCK LEVEL, OBSERVABLE [Yt ,Ct ]
100 79.65821 0.16049 248.06544 2.20163 0.95563 0.01990 0.05570 2.06671 0.73529
300 60.99857 0.05292 203.41839 1.52785 1.06409 0.00624 0.03569 1.57389 0.22976
900 36.45517 0.01786 199.70719 1.35222 1.16961 0.00220 0.01350 1.39302 0.12932
2700 17.90353 0.00598 99.03021 1.33281 0.79819 0.00088 0.00465 1.31428 0.06369
8100 7.19273 0.00206 61.85160 1.33369 0.83536 0.00035 0.00183 1.31305 0.02693

INVESTMENT SHOCK GROWTH, OBSERVABLE [Yt ,Ct ]
100 70.43775 0.16351 309.84595 2.33406 0.90310 0.18742 0.18493 1.85570 1.22209
300 59.33852 0.05270 231.00262 1.57822 0.93599 0.06849 0.11995 1.39053 0.50447
900 36.56057 0.01785 227.14969 1.38118 1.07566 0.04748 0.09676 1.30805 0.43374
2700 17.79301 0.00617 116.20152 1.36056 0.73564 0.05269 0.09986 1.26627 0.38693
8100 7.68396 0.00242 84.64285 1.35743 0.82205 0.04133 0.08485 1.26177 0.34846

Table 5
Convergence ratios for posterior precisions for investment adjustment costs model.

dT 𝛼 RA 𝛿 𝜌A 𝜎A 𝜃 𝜅 𝜌𝜐 𝜎𝜐

BASELINE LEVEL, OBSERVABLE [Ct ]
300/100 1.005 0.987 0.483 2.118 0.509 0.978 1.520 – –
900/300 1.049 0.989 1.306 2.465 2.035 1.008 0.793 – –
2700/900 1.107 0.997 1.540 2.806 1.877 1.032 0.742 – –
8100/2700 1.275 1.021 1.597 3.127 1.352 1.051 0.836 – –

BASELINE GROWTH, OBSERVABLE [Ct ]
300/100 1.178 1.009 0.589 1.942 0.528 1.027 1.025 – –
900/300 1.115 0.989 1.345 1.750 1.758 1.003 0.845 – –
2700/900 1.298 1.018 1.697 2.139 2.372 1.073 1.273 – –
8100/2700 1.917 0.985 3.123 1.963 1.548 0.911 1.098 – –

INVESTMENT SHOCK LEVEL, OBSERVABLE [Yt ,Ct ]
300/100 2.297 0.989 2.460 2.082 3.340 0.941 1.922 2.285 0.937
900/300 1.793 1.013 2.945 2.655 3.297 1.056 1.134 2.655 1.689
2700/900 1.473 1.005 1.488 2.957 2.047 1.209 1.033 2.830 1.477
8100/2700 1.205 1.034 1.874 3.002 3.140 1.186 1.180 2.997 1.269

INVESTMENT SHOCK GROWTH, OBSERVABLE [Yt ,Ct ]
300/100 2.527 0.967 2.237 2.029 3.109 1.096 1.946 2.248 1.238
900/300 1.848 1.016 2.950 2.625 3.448 2.080 2.420 2.822 2.579
2700/900 1.460 1.037 1.535 2.955 2.052 3.329 3.096 2.904 2.676
8100/2700 1.296 1.175 2.185 2.993 3.352 2.353 2.549 2.989 2.702

Phillips curve is forward-looking, whereas partial inflation indexation
adds a backward-looking component, as Γ̂t−1 = 𝜄p𝜋t−1. Now, the issues
we discuss in the introduction become obvious. That is, 𝜈 and 𝜑 are not
independent parameters, there is an infinite number of combinations
of the elasticity of demand, 1∕𝜈, and the price stickiness parameter, 𝜑,
which yield the exact same value for the slope 𝜅 of the New Keynesian
Phillips curve. Likewise, the steady state government spending target g∗

does not enter the linearized solution. As our focus in this section is on
the monetary policy parameters, we fix 𝜑 and g∗ for now and discuss
possible ways to identify 𝜈, 𝜑 and g∗ in the summary subsection.

5.2. Model variants

In our experiments, we distinguish three different model scenarios.
Our first scenario, called BASELINE, corresponds to the original model
specification of An and Schorfheide (2007). Accordingly, we consider
full inflation indexation and switch off the discount factor shifter. In our
second scenario, called PARTIAL INDEXATION, we analyze the effect of
adding the partial inflation indexation scheme to the BASELINE scenario.
In our third scenario, called PREFERENCE SHOCK, we add the discount
factor shifter to the BASELINE model. We run all scenarios under the four
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Table 6
Model equations of monetary model.

𝜆t = 𝜁t c−𝜏t

𝜆t = 𝛽Et

[
𝜆t+1

Rt
𝛾zt+1𝜋t+1

]
1 = 1

𝜈

(
1 − (𝜆t∕𝜁t )−1) + 𝜑(𝜋t − Γt−1)𝜋t −

𝜑
2𝜈
(𝜋t − Γt−1)2 − 𝜑𝛽Et

[
𝜆t+1
𝜆t

yt+1
yt

(𝜋t+1 − Γt )𝜋t+1

]
yt = ct +

(
1 − 1

gt

)
yt +

𝜑
2
(𝜋t − Γt−1)2yt

log (gt ) =
(
1 − 𝜌g

)
log (g) + 𝜌g log (gt−1) + 𝜀g,t

log (zt ) = 𝜌z log (zt−1) + 𝜀z,t
log (𝜁t ) =

(
1 − 𝜌𝜁

)
log (𝜁 ) + 𝜌𝜁 log (𝜁t−1) + 𝜀𝜁,t

Rt = R∗1−𝜌R
t R𝜌Rt−1 exp

{
𝜀R,t

}
YGRt = 𝛾Q + 100

[
log

(
yt

yt−1

)
+ log

(
zt
z

)]
INFLt = 𝜋A + 400 log

(
𝜋t
𝜋

)
INTt = 𝜋A + rA + 4𝛾Q + 400 log

(
Rt
R

)

Table 7
Parameters, priors and bounds for monetary model.

Parameters Prior Specification Bounds

Symbol 𝜽0 Density Mean Std. Deviation Lower Upper

rA 1.00 Gamma 0.80 0.50 1e-5 10
𝜋A 3.20 Gamma 4.00 2.00 1e-5 20
𝛾Q 0.55 Normal 0.40 0.20 −5 5
𝜏 2.00 Gamma 2.00 0.50 1e-5 10
𝜈 0.10 Beta 0.10 0.05 1e-5 0.99999
𝜓𝜋 1.50 Gamma 1.50 0.25 1e-5 10
𝜓y 0.125 Gamma 0.50 0.25 1e-5 10
𝜓Δy 0.2 Gamma 0.20 0.15 1e-5 10
𝜌R 0.75 Beta 0.50 0.20 1e-5 0.99999
𝜌g 0.95 Beta 0.80 0.10 1e-5 0.99999
𝜌z 0.90 Beta 0.66 0.15 1e-5 0.99999
100𝜎R 0.2 Inv Gamma 0.30 4.00 1e-8 5
100𝜎g 0.6 Inv Gamma 0.40 4.00 1e-8 5
100𝜎z 0.3 Inv Gamma 0.40 4.00 1e-8 5
𝜄p 0.5 Beta 0.50 0.15 1e-8 1
𝜌𝜁 0.75 Beta 0.50 0.20 1e-5 0.99999
100𝜎𝜁 0.2 Inv Gamma 0.30 4.00 1e-8 5
𝜑 50 – – – – –
1∕g∗ 0.85 – – – – –

different monetary policy rules. We only report the results for observ-
able variables YGRt , INFLt and INTt here, as, on the one hand, we find
that 𝛾Q can only be identified from observing YGRt , and, on the other
hand, other combinations of model variables do not change our results
significantly. We refer to the replication files for the full set of results,
i.e. for all possible combinations of up to three variables. The follow-
ing sensitivity analysis of identification as a model property is based
on the calibrated local point 𝜽0 given in the second column of Table 7.
The replication files also contain the local identifiability analysis for
the prior mean as well as 100 random draws from the prior domain. As
the results are almost identical for all model variants, we focus on the
calibrated values in our exposition.

5.3. Theoretical identification

Table 8 summarizes whether the rank requirements are fulfilled for
the different scenarios and monetary policy rules at 𝜽0. As shown by e.g.
Komunjer and Ng (2011) or Qu and Tkachenko (2012), the monetary
policy parameters (𝜓y, 𝜓𝜋 , 𝜌R, 𝜎R) cannot be identified in the BASE-
LINE specification when using the FLEX-PRICE or the SW monetary rule,
whereas in the STEADY STATE or GROWTH specifications these param-
eters are locally identifiable. Our analysis shows two more ways to
solve the lack of identification, which are, moreover, independent of
the functional form of the output-gap: adding a partial inflation indexa-

tion scheme and/or a preference shock.6 Intuitively, the introduction of
partial indexation results in a dynamic inflation specification in equa-
tion (6) that will also depend on past inflation, where the degree of
indexation determines how backward looking the inflation process is.
This, of course, has an effect on the transmission channel of monetary
policy, as the price dispersion between individual prices of the monop-
olistic competitors will be much smaller compared to a constant price
setting behavior. In contrast, the preference shock basically resembles a
demand shock, as it shifts the effective discount factor that determines
the intertemporal substitution decisions of households. According to the
IS curve in equation (5) and the Phillips curve in equation (6), a positive
impulse in the preference shifter leads to a positive impact on consump-
tion and output, but also to some inflationary pressures and a partial
crowding out of investment, see also Smets and Wouters (2003) for a
similar result. Therefore, the overall effect on the output-gap and on the
nominal interest rate add sufficient internal dynamics to the transmis-
sion channel of monetary policy to identify the Taylor rule parameters
in all scenarios separately.

5.4. Weak identification

Tables 9 and 10 give insight into the strength of identification

6 Kocicecki and Kolasa (2018) also show that spillovers from public spending
to productivity can be an alternative way to ensure local identification in the
BASELINE FLEX-PRICE scenario.
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Table 8
Rank checks for monetary model.

Scenario Monetary Policy Specification

FLEX-PRICE STEADY STATE GROWTH SW

BASELINE [𝜓𝜋,𝜓 y , 𝜌R, 𝜎R] ✓✓ ✓✓ [𝜓𝜋,𝜓y , 𝜌R, 𝜎R]
PARTIAL INDEXATION ✓✓ ✓✓ ✓✓ ✓✓
PREFERENCE SHOCK ✓✓ ✓✓ ✓✓ ✓✓
PARTIAL INDEXATION and PREFERENCE SHOCK ✓✓ ✓✓ ✓✓ ✓✓

Notes: Observable variables are YGRt , INFLt and INTt . All three rank criteria come to the same conclusion, so we
do not separately report the results. A ✓✓ indicates that all model parameters are theoretically identifiable, whereas
[𝜓𝜋,𝜓y , 𝜌R, 𝜌𝜎 ] indicates that these parameters cannot be identified jointly.

according to the Bayesian learning rate indicator of Koop et al. (2013)
for the FLEX-PRICE BASELINE, STEADY STATE BASELINE, FLEX-PRICE PREF-
ERENCE SHOCK and FLEX-PRICE INDEXATION scenarios. We focus in
particular on these scenarios as the non-identified model of An and
Schorfheide (2007) corresponds to our FLEX-PRICE BASELINE scenario
and the SW rule behaves similarly to the FLEX-PRICE specification. Our
simulation and estimation exercise shows that the monetary policy
parameters are weakly identifiable in the original (theoretically non-
identified) model, since the rates at which the posterior precisions are
updated are slower than the sample sizes. That is, the average posterior
precision values in Table 9 tend towards zero instead of constant values,
and, similarly, the convergence ratios in Table 10 do not tend towards
the change in sample size of 3. Here it becomes evident that estimating
non-identified models may also introduce problems in the estimation of
other, actually identified model parameters. In particular, this is accom-
panied by many difficulties in the initialization of the proposal distribu-
tion for the MCMC algorithm as finding the mode and a positive definite
Hessian at the mode is tedious, see section 3.2 on how we overcome
this issue. Albeit, this is an inherent problem of many (even identified)
DSGE models, lack of identification of some parameters aggravates this.
If, however, the monetary policy authority reacts to output deviations
from steady state all parameters, including the ones in the Taylor rule,
are strongly identified. The same is true for the flex-price Taylor rule,
when we introduce a partial inflation indexation scheme. A preference
shock, on the other hand, leaves several parameters (𝜓𝜋 , 𝜓y , 𝜌R , 𝜎R,
𝜌𝜁 and 𝜎𝜁 ) weakly identified.

5.5. Summary

To sum up, in all our experiments we provide theoretical support (in
terms of identification) for including both a PARTIAL INFLATION INDEXA-
TION scheme as well as a PREFERENCE SHOCK into modern DSGE models.
These features solve the theoretical lack of identification of the Taylor
rule parameters independent of the output-gap specification. However,
only PARTIAL INFLATION INDEXATION enhances the overall strength of
identification of all model parameters, whereas the PREFERENCE SHOCK
leaves several model parameters weakly identifiable (and estimable).
Regarding the selection of observables, we find that some parame-
ters, e.g. the average growth rate of technology, are only identifiable
when introducing a specific measurement equation. This, of course, pro-
vides researchers another option to fine-tune the identifiability of their
models (possibly with another eye to data availability). In this line of
thought, we could have also introduced an additional equation that pins
down target government spending g∗ , otherwise it drops out from the
linearized solution. Lastly, as mentioned in the beginning of the section,
𝜑 and 𝜈 are co-linear, as they jointly determine the slope of the New
Keynesian Phillips curve. Our model variants are not able to separately
identify these parameters, which is a common finding in linearized New
Keynesian DSGE models, see e.g. Clarida et al. (1999), Ireland (2004)
or Levin et al. (2003). We refer to Mutschler (2015) who shows that a
higher-order approximation of the solution yields means to distinguish
these parameters even in the BASELINE FLEX-PRICE scenario.

6. Implications for model building

Our results are relevant from a model building perspective, because
it is crucial for macroeconomists to know what model features, fric-
tions and shocks can coexist within models without redundancy. In our
example models, we focus on four choices a researcher can make that
matter for identification.

6.1. Choice of observables

First, both theoretical lack of and empirical weak identification are
often due to an unfortunate choice of observables. In some cases, like
the steady state parameters in our monetary model, this seems obvi-
ous. In other cases, like in our investment-adjustment costs model, one
should use a specific observable variable (e.g. consumption) instead
of other, commonly used ones (e.g. output). As the literature on the
choice of observables is still very sparse (Canova et al., 2014; Guer-
ron-Quintana, 2010; Martínez-García et al., 2012), we advocate (and
show means) to do a brute-force sensitivity analysis before taking a
model to actual data. In this line of thought, Kim (2003) already pointed
out, that information on the relative price of investment can also solve
the identification problem and hence, it is not surprising that current
papers include this price in estimated DSGE models. However, there
are trade-offs in terms of model-implied dynamics and empirical fit.
For instance, Schmitt-Grohé and Uribe (2012) use the relative price of
investment as an observable and find that their results regarding the
macroeconomic effects of investment-specific shocks are in sharp con-
trast with the ones obtained by Justiniano et al. (2010) who do not
include this variable in their estimation. Therefore, it is important, on
the one hand, to establish which observables are theoretically favored
in terms of identification, but, on the other hand, to use economic hind-
sight and model simulations to select the variables that best address the
key issues one is interested in. Also, data availability and limitations
need to be taken care of and one has to correctly transform empiri-
cal data to match the model variables, we refer to Pfeifer (2018) for
excellent hands-on advice on this.

6.2. Functional specifications

Second, our finding that the investment-growth specification of
intertemporal costs in the fashion of Christiano et al. (2005) is not sub-
ject to functional equivalence with multisectoral costs is useful, espe-
cially since this specification is now the benchmark in the quantita-
tive DSGE literature. Accordingly, Christiano et al. (2011) compare the
growth and level specifications of investment adjustment costs in their
study of the government-spending multiplier at the zero lower bound.
They find, while the growth specification implies a smaller response to
investment (as it penalizes changes in investment directly), the dynamic
responses of the other variables are similar, such that their main results
are robust. Likewise, the monetary policy rule needs to be specified
carefully and there is no consensus on the right functional specifica-
tion. We follow up on the fact that economists employ quite different
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Table 9
Average posterior precisions for monetary model.

PARAMETERS

T rA 𝜋A 𝛾Q 𝜏 𝜈 𝜓𝜋 𝜓y 𝜌R 𝜌g 𝜌z 100𝜎R 100𝜎g 100𝜎z 𝜌𝜁 100𝜎𝜁 𝜄p

BASELINE WITH FLEX-PRICE TAYLOR RULE (∗)
100 0.073 0.045 0.495 0.081 11.648 0.503 0.396 12.218 3.386 35.239 36.472 4.059 9.896 – – –
300 0.042 0.023 0.233 0.044 10.966 0.212 0.103 8.774 8.550 25.330 31.041 5.302 8.838 – – –
900 0.024 0.013 0.151 0.025 6.222 0.119 0.045 6.610 9.153 26.105 33.604 5.510 8.101 – – –
2700 0.023 0.012 0.131 0.025 6.230 0.041 0.014 3.262 8.136 28.803 25.203 5.578 8.970 – – –
8100 0.021 0.012 0.126 0.025 6.745 0.015 0.005 1.360 8.067 28.419 13.812 5.578 9.217 – – –

BASELINE WITH STEADY STATE TAYLOR RULE
100 0.075 0.025 0.523 0.070 9.020 0.693 1.831 11.527 4.703 39.077 36.586 2.246 9.015 – – –
300 0.039 0.009 0.221 0.047 7.927 0.322 0.719 8.912 11.735 21.345 34.834 2.254 5.373 – – –
900 0.022 0.007 0.143 0.020 4.564 0.415 1.519 10.241 11.832 23.252 42.893 2.608 4.985 – – –
2700 0.021 0.007 0.122 0.019 4.641 0.379 1.480 10.163 10.438 24.466 44.439 2.696 5.151 – – –
8100 0.021 0.007 0.127 0.019 5.292 0.436 1.780 10.079 9.613 22.966 41.976 2.630 5.109 – – –

PREFERENCE SHOCK WITH FLEX-PRICE TAYLOR RULE (∗)
100 0.070 0.048 0.518 0.072 23.266 0.428 0.302 10.612 2.415 25.409 29.496 4.780 8.650 0.257 0.144 –
300 0.041 0.026 0.247 0.032 11.194 0.213 0.096 8.827 2.104 24.163 29.769 4.598 7.110 0.096 0.045 –
900 0.027 0.014 0.146 0.027 7.656 0.103 0.034 5.844 3.942 25.276 29.056 5.170 7.624 0.034 0.055 –
2700 0.028 0.014 0.153 0.017 7.115 0.042 0.013 3.033 4.256 22.480 23.579 2.697 5.685 0.023 0.016 –
8100 0.023 0.012 0.120 0.020 6.381 0.014 0.004 1.308 4.660 26.288 13.355 3.758 6.303 0.005 0.010 –

INDEXATION WITH FLEX-PRICE TAYLOR RULE (∗)
100 0.074 0.041 0.494 0.077 12.615 0.539 0.325 12.077 3.268 32.418 35.518 4.083 7.383 – – 1.083
300 0.042 0.022 0.234 0.051 11.921 0.314 0.125 8.045 8.271 23.608 28.648 5.308 6.991 – – 0.632
900 0.025 0.012 0.153 0.027 7.086 0.311 0.084 6.286 9.069 23.826 32.700 5.472 5.346 – – 0.580
2700 0.024 0.011 0.131 0.030 7.039 0.225 0.051 4.597 8.245 27.163 28.740 5.616 6.179 – – 0.589
8100 0.021 0.010 0.119 0.030 7.507 0.203 0.042 3.772 8.074 26.849 25.771 5.590 6.179 – – 0.584

Notes: Observable variables are YGRt , INFLt and INTt . A (∗) indicates cases where we used an advanced mode finding procedure, as outlined in section 3.2.
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concepts and definitions for the output-gap (Kiley, 2013), and show
how this matters for identification. This is also consistent with Hirose
and Naganuma (2010)’s findings, who argue that the estimated output
gap is sensitive to the specification of monetary policy rules.

6.3. Model features

Third, adding model features provides a researcher with more flex-
ibility in functional specifications. Accordingly, our findings show that
by adding a cost on capital utilization one is able to identify models
with both multisectoral and intertemporal costs. A recent example of
this is Moura (2018) who is able to estimate both types of costs to study
investment price rigidities in a multisectoral DSGE model. Likewise,
partial inflation indexation identifies our monetary model, indepen-
dent of the concrete specification of the Taylor rule, and even enhances
the strength of identification of all model parameters. This finding mir-
rors the fact that history dependence of inflation in the New Keynesian
Phillips curve improves the fit of an otherwise forward-looking model,
as emphasized by Smets and Wouters (2003, 2007).

6.4. Choice of shocks

Fourth, introducing additional innovations, like structural shocks
to investment-specific technological change or to the preference dis-
count rate, plays an important role not only for the model dynamics,
but also in terms of theoretical and empirical parameter identifiability.
This finding is of a more general nature and needs some discussion.

On the one hand, shocks introduce wedges and different internal
dynamics to the structure of a model. For example, additional shocks
add additive components to the variance decomposition. If a previously
unidentified parameter influences this additional component, there is
a way to identify this parameter from the second moments or spec-
tral properties of data. Of course, it is important that the additional
component is not simply a linear combination of other components of
already included shocks. Similar to our findings, Martínez-García and
Wynne (2014, p. 166) argue that a productivity shock has the potential
to introduce differences in models that can be exploited to tell them
apart. Equivalently, Canova et al. (2014, p. 435) and Guerron-Quintana
(2010) provide illustrative three equation models to show analytically
that different shocks carry different information for parameter identifi-
cation. Our example models, however, are not analytically but empiri-
cally motivated. The results in our paper, therefore, resemble the find-
ings that (1) general equilibrium models perform poorly when explain-
ing investment dynamics without heavily relying on investment specific
shocks (Justiniano et al., 2011; Kamber et al., 2016), (2) the variability
of inflation is to a large extent determined by preference shocks (Smets
and Wouters, 2003) and (3) shocks to the preference discount rate play
an important role in getting the interest rate fall to zero (Christiano et
al., 2011).

On the other hand, in practice, the number of shocks limits the num-
ber of observable variables one can choose. Applied researchers may be
tempted to add non-structural shocks such as measurement errors, but
we advise not to do so because of two reasons. First, the results on
identification may be counter-productive as indicated by e.g. Martínez–
García et al. (2012). In our example models, we experimented with
measurement errors and found no significant benefit of adding these.
Second, even though measurement errors in the observation equation
are a necessary requirement for some estimation procedures and filter-
ing techniques, they potentially affect the accuracy of parameter esti-
mates (Atkinson et al., 2019).

7. Conclusion

We strongly recommend that researchers treat parameter identifica-
tion as a model property, i.e. from a model building perspective. A wise
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choice on observables or slight and subtle changes and fine-tuning of
model assumptions, functional specifications, or structural shocks have
an impact on both theoretical (yes/no) identification properties as well
as on the strength of identification. In this regard, we side with Adolf-
son et al. (2019) who argue that “lack of identification should neither
be ignored nor be assumed to affect all DSGE models, […] identifi-
cation problems can be readily assessed on a case-by-case basis”. We
extend their approach by using different diagnostic tools for theoretical
as well as empirical identification properties and also show means to
dissolve the identification failures. Moreover, our paper also has a com-
putational contribution as our research feeds into and extends Dynare’s
identification toolbox. In particular, we provide means to analyze the
criteria of Komunjer and Ng (2011) and Qu and Tkachenko (2012) by
using analytical (instead of numerical) derivatives to compute the rele-
vant Jacobians. Lastly, even though our example models are empirically
motivated, they are still of small scale and easy to replicate and extend.
They should be useful for both applied and theoretical macroeconomists
as well as for teaching purposes.
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