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Abstract

This online appendix contains detailed results on the Monte-Carlo study of the paper and derives the

smoothing step of the skewed Kalman filter in general.

1. A Monte Carlo Study

In this section we conduct a thorough Monte Carlo study to evaluate the performance of the Pruned Skewed
Kalman Filter and Smoother in terms of accuracy and speed. To this end, we consider three different state-
space models as data-generating processes (DGP). DGP (1) is a univariate model given by the following

parametrization:

G=08  F=10, p.=1 $.=001, p,=03  %,=064, 1,=0 X =-089
DGP (1)

DGP (2) is a multivariate model with four state and three observable variables and randomly drawn param-

eters:
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Note that in DGP (1) and DGP (2) we introduce the auxiliary hyperparameter \,€]—1; 1] to re-parametrize

the skewness parameters according to the following relationships:

Ly = )‘77277_1/27

A, =(1- )\%)Inn

In this case, we can simplify A, +T,'S, T, to the identity matrix I,,, such that the unconditional expectation

n

vector and the covariance matrix of 7; can be calculated in closed-form (Flecher et al., 2009):

2 2
Elm] = pny + \/;AnEnl/Q L., V=%, (1 - ﬂ/\?,>

(1)

Arellano-Valle & Azzalini| (2008) and [Kaarik et al| (2015) provide related discussions on the usefulness of

this re-parameterization for the skew-normal distributionﬂ Lastly, DGP (3) is a multivariate model with

three state variables that are all observable and do not use this re-parametrization:
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0.5605 0.6397 —0.4333 0 0 1 0 0 1 0
0.64 0 0 5 0 0 0 0.3 0
3, = 0 0.36 0 r, = 0 A, = 1 0 pn = | —0.1 vy =10 DGP (3)
0 0 0.49 -6 0 1 0.2 0

Note that DGP (3) is particularly of interest to our empirical application as it implies that 7, is right-

skewed, 12, is symmetric (Gaussian), and 73 ¢ is left-skewed.

The initial state distribution is set to a normal one with an initial covariance matrix with 10 on the di-

1This is without loss of generality. We mainly use this to quickly compute E[nt] and V[n¢] as we use these values as input
parameters for the Gaussian Kalman Filter. In fact, our replication codes contain functions to compute the unconditional
mean and the covariance matrix for any parameterization of the multivariate CSN distribution. Moreover, in our empirical
application we do not use this re-parametrization.



agonal, xgo ~ CSN(0,101,,,0,0,1I,,) = N(0,10I,,), following a suggestion of [Harvey & Phillips (1979).
To compute the likelihood function, we make use of the standard predictive decomposition based on the

conditional distribution of y; given y;_1:
. S S
Yelys—1 ~ CSN(ytlt—la Qt\t—la Kt—kfwaly Vit—1, At|t—1 + (Ft|t—1 - Kt—klerF)Zﬂt—ng\t_l)

where §y;—1 = Fiys—1 -+ is the predicted value and Q4 _y = FX;,_ F'+X, the prediction-error covariance

matrix of the Gaussian Kalman filter.

1.1. State estimation

For forecasting, it is helpful to condense the filtered distribution x;; into a point estimator. Since the
CSN distribution is asymmetric, the expectation E[z;] is one potential, but not necessarily the best point
estimator. Let L[Z:, ;] denote the loss function for a point estimator Z; if the true value is x;. Depending
on the loss function, different point estimators will minimize the expected loss. Of course, if the loss function
is quadratic, i.e. Lo[Z, z;] = (Z; — 24)?, the expected loss is minimal if &, = E[z,;]. If the loss function is
Ly[#, 2¢] = |Z; — x¢|, the best point estimator is the median of Tt And the asymmetric loss function
~ a|:Et — It| for Ty > Ii?t
Lq[xt’ xt] =
b|fi’t — il't| for Tt S "Et
results in the a/(a + b)-quantile of x;, as point estimator. A similar discussion applies to the smoothed

states x|

We start by simulating R = 2400 sample paths for z; and y; of different length 7" = {40, 80, 110} (plus a
burn-in of 100 periods). The shocks 7, are drawn from the CSN distribution, whereas the measurement
errors ¢; are drawn from the normal distribution. We compute the expected losses to assess how well the
Pruned Skewed Kalman Filter and Smoother estimate the unobserved state variables in comparison to the
conventional Skewed or Gaussian Kalman Filters and Smoothers. That is, for each sample r = 1,..., R the
loss is computed as .
Loss" := Z L[@gr)wgr)]
t=20

where in the univariate case L is any of the three loss functions Ly, Lo and Lz (with a = 1 and b = 4) under
consideration, while in the multivariate case we focus only on Lo as multivariate versions of L, and L3 are
not readily available. Note that in order to avoid too large an impact of the initial distribution o, the

losses are calculated after a burn-in phase of 20 periods. The expected loss is then estimated by averaging



over all replications

R
1
Expected Loss = = rz::l Loss(™.

Tables [1] and [2| report the Ezpected Loss and the 5th and 95th percentiles of Loss™ of our Monte-Carlo
simulation exercise for the different variants of both filters and smoothers. Three things are worth pointing
out. First, the Skewed Kalman Filter and Smoother are superior to the Gaussian Kalman Filter and
Smoother in all cases. Even though the better performance is rather small in the univariate case, it becomes
really measurable in the multivariate case. This is not surprising, since the closed skew-normal distribution
deviates only mildly from symmetry and normality (Liseo & Parisi, [2013) and the conventional Kalman
filter and smoother are naturally optimal in its domain, i.e. when data is very close to normal. Nevertheless,
in the more general case, the conventional Kalman filter and smoother simply neglect the skewed behavior;
while the Skewed Kalman Filter embeds normality as a special case. Second, our pruning algorithm is very
accurate and numerically almost equivalent to the non-pruned Skewed Kalman Filter (up to the twelfth digit
in the univariate case and up to the 5th digit in the multivariate case). Third, the pruning threshold does
not matter measurably in the univariate case and makes only a small numerical difference in multivariate
settings. Clearly, the closer the tolerance is to 0, i.e. to the non-pruned filter and smoother, the more
accurate we estimate the states. However, as we have argued above the non-pruned version of the filter and
smoother is only feasible in the univariate case, while in multivariate settings we manage to deal with the
numerical challenges for very small sample sizes only. Our pruning algorithm, on the other hand, is able to
overcome this problem. Even with very low tolerance thresholds we are able to compute the filtering and
smoothing steps without running into the curse of increasing skewness dimensionality. We conclude that
overall both the Pruned Skewed Kalman Filter and Smoother perform well in terms of accuracy. However,

there is a trade-off between accuracy and speed, which we analyze next.

1.2. Computing time

The performance of the Pruned Skewed Kalman Filter should also be evaluated in relation to its computing
time. Table [3] reports the time in seconds required to compute 1000 evaluations of the log-likelihood
function of univariate DGP (1) and multivariate DGP (2) for different sample sizes. We can see that as
the number of observation periods grows, it takes more time to evaluate the likelihood function in all cases.
The curse of increasing skewness dimensionality inherent in the non-pruned Skewed Kalman Filter becomes
apparent. Even though we are able to evaluate the Gaussian cdfs of increasing dimension in the univariate
case, this comes at a cost as the computational time increases exponentially. In the multivariate case, the
calculations are still feasible in principle for small sample sizes, but explode relatively quickly for medium

to large sample sizes or require an unreasonably huge amount of computational time and memory. This
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Table 1: Expected losses for filtered states

DGP T LOSS GAUSSIAN NO PRUNING TOL=1e-6 TOL=1e-4 TOL=1e-2
(1) 40 Ly 0.166535064 0.166527075 0.166527075 0.166527075 0.166527075
[0.1236;0.2142] [0.1235;0.2144] [0.1235;0.2144] [0.1235;0.2144] [0.1235;0.2144]
(1) 40 Lo 0.002080850 0.002080707 0.002080707 0.002080707 0.002080707
[0.0012;0.0033] [0.0012;0.0033] [0.0012;0.0033] [0.0012;0.0033] [0.0012;0.0033]
(1) 40 Lq 0.293173611 0.293160294 0.293160294 0.293160294 0.293160288
[0.2168;0.3852] [0.2167;0.3852] [0.2167;0.3852] [0.2167;0.3852] [0.2167;0.3852]
(1) 80 Ly 0.486149061 0.486122323 0.486122323 0.486122323 0.486122327
[0.4151;0.5639] [0.4151;0.5638] [0.4151;0.5638] [0.4151;0.5638] [0.4151;0.5638]
(1) 80 Lo 0.006087964 0.006087485 0.006087485 0.006087485 0.006087485
[0.0045;0.0080] [0.0045;0.0080] [0.0045;0.0080] [0.0045;0.0080] [0.0045;0.0080]
(1) 80 Lq 0.853449643 0.853414297 0.853414297 0.853414297 0.853414287
[0.7129;1.0017] [0.7127;1.0008] [0.7127;1.0008] [0.7127;1.0008] [0.7127;1.0008]
(1) 110 Ly 0.724620237 0.724598686 0.724598686 0.724598686 0.724598685
[0.6368;0.8186] [0.6367;0.8185] [0.6367;0.8185] [0.6367;0.8185] [0.6367;0.8185]
(1) 110 Lo 0.009073018 0.009072577 0.009072577 0.009072577 0.009072577
[0.0071;0.0113] [0.0071;0.0113] [0.0071;0.0113] [0.0071;0.0113] [0.0071;0.0113]
(1) 110 L 1.272405929 1.272363081 1.272363081 1.272363081 1.272363058
[1.1026;1.4533] [1.1024;1.4536] [1.1024;1.4536] [1.1024;1.4536] [1.1024;1.4536]
(2) 40 Lo 4.23932054 4.17299006 4.17299000 4.17298994 4.17450665
[2.1343;6.9488] [2.1172;6.9381] [2.1172;6.9381] [2.1173;6.9382] [2.0989;6.9805]
(2) 80 Lo 12.30937668 - 12.11085307 12.11085498 12.11665912
[8.4001;17.0700] [8.3181;16.9039] [8.3181;16.9048] [8.3003;16.9054]
(2) 110 Lo 18.39547677 - 18.10271658 18.10272323 18.11208988

[13.4673;24.0186]

[13.1829;23.6744]

[13.1834;23.6743)

[13.2441;23.6814]

Note: Lower is better. 5th and 95th percentiles in square brackets.

becomes even more severe if we increase the dimension of the state-space system matrices which is rather

likely for real data applications.

The proposed Pruned Skewed Kalman Filter does not suffer from this and performs convincingly well.
It is only slightly affected by a growing sample size; relatively speaking, it behaves very similar to the
conventional Kalman filter in this regard. That is, the relative time increase between a sample size of 50
and 250 is approximately 3.93 for the univariate Gaussian Kalman Filter, whereas for the Pruned Skewed
Kalman Filter we get a factor of approximately 4.15 for a very tight pruning threshold of 1e-6, and 4.25 for
a very rough tolerance of le-2. In absolute terms, using le-2 as the tolerance level is 1.5 times faster than
using le-6 as the tolerance level. In multivariate settings, the results are similar. The average time needed
to compute the likelihood once is at least twice as fast when using a pruning threshold of le-2 compared to
le-6. Combined with the results of the previous section, we conclude that a threshold of le-2 to le-4 seems
to be a good compromise between accuracy and speed for multivariate models. For univariate models, one
can easily lower this to a very small threshold such as le-6. In a nutshell: the lower the more accurate, the

higher the faster.

Nevertheless, we do not want to hide the obvious fact that the Gaussian Kalman Filter is clearly the speed
champion: it is roughly ten times faster than our proposed algorithm, but we are on the order of (negligible)
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Table 2: Expected losses for smoothed states

DGP T LOSS GAUSSIAN NO PRUNING TOL=1e-6 TOL=1e-4 TOL=1e-2
(1) 40 Ly 0.166539615 0.166528591 0.166528591 0.166528596 0.166528596
[0.1239;0.2143] [0.1236;0.2145] [0.1236;0.2145] [0.1236;0.2145] [0.1236;0.2145]

(1) 40 Lo 0.002080868 0.002080555 0.002080555 0.002080555 0.002080555
[0.0012;0.0033] [0.0012;0.0033] [0.0012;0.0033] [0.0012;0.0033] [0.0012;0.0033]

(1) 40 L 0.293186237 0.293159674 0.293159674 0.293159669 0.293159669
[0.2162;0.3848] [0.2163;0.3847] [0.2163;0.3847] [0.2163;0.3847) [0.2163;0.3847]

(1) 80 Ly 0.486116200 0.486083757 0.486083757 0.486083761 0.486083761
[0.4153;0.5645] [0.4156;0.5644] [0.4156;0.5644] [0.4156;0.5644] [0.4156;0.5644]

(1) 80 Lo 0.006087517 0.006086645 0.006086645 0.006086645 0.006086645
[0.0045;0.0080] [0.0045;0.0080] [0.0045;0.0080] [0.0045;0.0080] [0.0045;0.0080]

(1) 80 L 0.853428859 0.853347301 0.853347301 0.853347286 0.853347286
[0.7133;1.0015] [0.7125;1.0010] [0.7125;1.0010] [0.7125;1.0010] [0.7125;1.0010]

(1) 110 Ly 0.724563642 0.724528917 0.724528917 0.724528915 0.724528915
[0.6363;0.8186] [0.6357;0.8184] [0.6357;0.8184] [0.6357;0.8184] [0.6357;0.8184]

(1) 110 Lo 0.009072162 0.009071158 0.009071158 0.009071158 0.009071158
[0.0070;0.0113] [0.0070;0.0113] [0.0070;0.0113] [0.0070;0.0113] [0.0070;0.0113]

(1) 110 Lg 1.272365795 1.272252412 1.272252412 1.272252388 1.272252388
[1.1024;1.4536] [1.1017;1.4534] [1.1017;1.4534] [1.1017;1.4534] [1.1017;1.4534]

(2) 40 Lo 0.37817718 0.37728799 0.37728800 0.37728833 0.37740658
[0.1077;1.0473] [0.1100;1.0227] [0.1100;1.0227) [0.1100;1.0226] [0.1099;1.0301]

(2) 80 Lo 0.66853761 - 0.66267846 0.66267825 0.66275740
[0.3625;1.3612] [0.3611;1.3307] [0.3611;1.3306] [0.3612;1.3280]

(2) 110 Lo 0.88605162 - 0.87956632 0.87956592 0.87960797
[0.5568;1.5668] [0.5538;1.5548] [0.5538;1.5549] [0.5550;1.5550]

Note: Lower is better. 5th and 95th percentiles in square brackets.

milliseconds here. Other approaches to evaluate the likelihood, such as Sequential Monte Carlo, are

typically much slower by a factor of several hundred or thousand.

Moreover, our implementation of both the conventional as well as the Pruned Skewed Kalman Filters are very
textbook-like to fix ideas and highlight the underlying intuition. There is still much room for performance
gains in the codes by e.g. avoiding inverses, adapting a steady-state filter and using Chandrasekhar recursions.
We experimented with several such changes to the code and are able to cut the computational time at least
by a halfﬂ The Pruned Skewed Kalman Filter is therefore a very attractive and comparatively fast addition
to the filtering toolkit of researchers who deal with skewed data and distributions. In the next section, we

explore the finite sample properties of quasi-maximum likelihood estimators for the skewness parameters.

1.8. Accuracy of parameter estimation

In the last simulation exercise, we generate R = 1000 datasets from the multivariate DGP (3) with different

sample sizes T = {100, 150,200}. We then estimate the underlying parameters of the distribution of 7, i.e.

2Granted our implementation of the Gaussian Kalman Filter can also be made faster. That’s why we report the results for
non-optimized, textbook-style codes.



Table 3: Computation time

DGP T GAUSSIAN NO PRUNING TOL=1e-6 TOL=1e-4 TOL=1e-2
(1) 50 0.2555 26.4004 5.7352 5.4255 3.7236
[0.18;0.39] [19.85;42.68] [4.26;8.55] [4.15;8.35) [2.82;5.74]
(1) 100 0.4236 178.4764 9.3932 9.2007 6.2735
[0.34;0.63] [164.04;272.46] [8.56;14.91] [8.30;14.70] [5.61;10.14]
(1) 150 0.5988 764.5933 13.8686 13.5295 9.2433
[0.51;0.92] [730.60;860.85] [13.08;14.44] [12.72;14.12] [8.61;9.72]
(1) 200 0.7869 2276.7823 18.7564 18.3690 12.5310
[0.68;1.28] [2208.36;2374.31] [17.65;19.54] [17.25;19.01] [11.65;13.20]
(1) 250 1.0029 5407.6977 23.8373 23.4432 15.8381
[0.87;1.65] [5292.97;5522.95] [22.29;24.89] [21.77;24.56] [14.71;16.57]
(2) 50 0.8439 554.8769 16.9193 12.8243 8.3821
[0.71;1.46] [518.17;660.16] [15.82;17.94] [11.90;15.25] [7.74;9.32]
(2) 100 1.6507 10902.8252 36.6296 26.8729 17.0615
[1.42;2.99] [9388.04;13659.95] [32.88;42.71] [24.38;30.29] [15.77;18.32]
(2) 150 3.3166 - 56.8434 35.2654 26.1939
[2.65;5.69] [49.07;89.69] [30.71;55.59] [22.86;41.05]
(2) 200 4.6808 - 80.1512 49.6175 36.6851
[3.50;7.50] [65.44;118.95] [40.84;74.17) [30.44;54.95]
(2) 250 5.2042 - 90.9946 55.7294 41.4539
[4.35;9.10] [81.35;143.74] [50.84;88.30] (37.92;64.54]

Note: Time in seconds to compute 1000 evaluations of the log-likelihood function on AMD EPYC 7402P (24 cores, 96GB

RAM). 5th and 95th percentiles in square brackets.

fns log(diag(E,)) and diag(T',), while fixing all other parameters at their true valuesE| Note that DGP (3)

implies that 7, ; is right-skewed, 72 ; is symmetric (Gaussian), and 73 ; is left-skewed.

Inspired by |Atkinson et al,| (2019), we measure parameter accuracy by reporting not only the average, 5th
and 95th percentile of our estimates in the Monte Carlo sample, but also the normalized root-mean square-
error (NRMSE) for each estimated parameter. That is, for some parameter j and Kalman filter variant f
the error is the difference between the parameter estimate 9}7 #,r for dataset r and the true parameter value

0;:

R

1 11 .
NRMSE} = 5o\ > (0.5 — 0)°
J

r=1

In other words, we normalize the RMSE by the true value 6; to remove differences in the scales of the

parameters.

Table [4] shows the parameter estimates by used Kalman filter variant (first column header) and for the three
different sample sizes (second column header). Each cell includes the average value (first row), the 5th and

95th percentile in square brackets (second row), and the NRMSE in curly brackets (third row). Overall the

3We log-transform the variance to avoid the non-negativity constraint during the estimation procedure. The reported
estimates are re-transformed.



Table 4: Distribution of parameter estimates

Pruned Skewed KF' (1e-6)

Pruned Skewed KF (1e-2)

Gaussian KF

Param Truth 100 150 200 100 150 200 100 150 200
[ten)1 0.30 0.302 0.299 0.296 0.302 0.299 0.297 0.922 0.924 0.921
[0.19;0.43) [0.21;0.40] [0.22;0.38) [0.19;0.43) [0.21;0.40] [0.22;0.39) [0.83;1.01] [0.86;1.00] [0.86;0.98]
{0.261} {0.193} {0.173} {0.260} {0.193} {0.173} {2.081} {2.083} {2.075}
[ten]2 -0.10 —0.101 —0.099 —0.100 —0.101 —0.099 —0.100 —0.101 —0.099 —0.100
[-0.20;—0.00)  [—0.18;—0.02]  [—0.17;—0.03]  [—0.20;—0.00]  [—0.18;—0.02]  [—0.17;—0.03]  [—0.20;—0.00]  [—0.18;—0.02]  [—0.17;—0.03]
{—0.610} {—0.480} {—0.415} {—0.615} {—0.484} {—0.418} {—0.615} {—0.484} {—0.418}
[tn]s 0.20 0.195 0.200 0.198 0.195 0.200 0.198 —0.345 —0.343 —0.344
[0.08;0.29] [0.11;0.27] [0.13;0.26] [0.08;0.29) [0.11;0.27] [0.13;0.26] [—0.42;—0.28]  [—0.40;—0.28]  [—0.39;—0.29]
{0.321} {0.245} {0.214} {0.321} {0.245} {0.214} {2.734} {2.723} {2.723}
Z,]11 0.64 0.654 0.658 0.656 0.654 0.658 0.656 0.260 0.262 0.261
(0.44;0.87] [0.50;0.84] [0.51;0.81] [0.44;0.87) [0.50;0.84] [0.51;0.81] [0.19;0.34] [0.21;0.32] [0.21;0.31]
{0.203} {0.168} {0.148} {0.203} {0.168} {0.148} {0.597} {0.593} {0.594}
[Xn]22 0.36 0.351 0.353 0.354 0.351 0.353 0.354 0.351 0.353 0.354
[0.27;0.44] [0.29;0.42] [0.30;0.41] [0.27;0.44] [0.29;0.42] [0.30;0.41] [0.27;0.44] [0.29;0.42] [0.30;0.41]
{0.141} {0.117} {0.101} {0.141} {0.117} {0.101} {0.141} {0.117} {0.101}
(X533 0.49 0.491 0.494 0.489 0.491 0.494 0.489 0.193 0.195 0.193
(0.33;0.64] [0.37;0.62] [0.39;0.60] [0.33;0.64] [0.37;0.62] [0.39;0.60] [0.14;0.25] [0.15;0.24] [0.16;0.23]
{0.197} {0.160} {0.133} {0.197} {0.160} {0.133} {0.609} {0.605} {0.607}
Ty 5.00 6.178 5.712 5.631 6.173 5.712 5.630
[3.31;11.47] [3.56;9.22] [3.78;8.63] [3.31;11.43)] [3.56;9.21] [3.78;8.62]
{0.811} {0.513} {0.395} {0.804} {0.513} {0.394}
y]22 0.00 —0.001 —0.001 —0.000 —0.001 —0.001 —0.001
[—0.01;0.00] [—0.01;0.00] [—0.00;0.00] [—0.01;0.00] [—0.01;0.00] [—0.01;0.00]
{3 {3 {t 18 {3 {3
y]a3 -6.00 —7.538 —6.849 —6.581 —7.535 —6.848 —6.581
[—15.35,—3.76]  [—11.09;—4.21]  [—9.82;—4.30] [—15.36;—3.77] [—11.08;—4.21]  [—9.82;—4.30]
{—0.741} {—0.476} {—0.376} {—0.739} {—0.474} {—0.377}

Note: Cells contain average, [5,95] percentiles and {NRMSE}.



estimates using the Pruned Skewed Kalman Filter are convincingly good for both a very low and a rather
large pruning threshold. Most mass is centered around the true value and the distribution becomes narrower
with larger sample sizes. The Pruned Skewed Kalman Filter successfully uncovers the skewed distribution
of m+ and n3+, but also Gaussianity of 1. Note that the Gaussian Kalman filter completely misses the
skewed distribution of 7;; which is evident in heavily biased values of y, and 3J,. However, this bias is in
fact misleading, because when using the Gaussian Kalman filter, ;1,, and X, are actually estimates for E[n,]
and V[n], which in our exercise are equal to [0.9192; —0.1000; —0.3433] and diag([0.2565;0.3600; 0.1948]),
respectively. So the Gaussian Kalman filter still remains a powerful tool, if one is only concerned about
estimating the mean and variance of the process. Of course those two estimators are biased due to the
overlooked skewed distribution. In contrast, the Pruned Skewed Kalman Filter is more general as it nests

Gaussianity as a special case.

2. Skewed Kalman Smoother

In this section we derive the smoothing step of the skewed Kalman filter in general.

2.1. Introduction and notations

Derivation of the smoothing step is a tedious task, also in terms of notations. In order to carry out this
task as neatly as possible, we will proceed as follows. We first set notations and abbreviations. Afterwards,
in a separate section, we show some useful derivations which we use later on. Then the derivation of the
smoothing step proceeds with finding smoothed variables of periods T—1, T'—2, T — 3 and T — 4, recursively.
Here T denotes the last time period. From what we learn by deriving the above four periods manually, we
devise general formulas for any time period. The more compact formulas for any time period is then given

in the last section.

Now, let us start with with notations and abbreviations.

Jt = ZtltG/Et_-‘,-ll‘t

Ky = S1eF (FS 1o F + 20) 7 (Wi — Friegap)-

For any t, we know the prediction step distribution (see Rezaie & Eidsvik| (2014))

L)t ™~ CSNp,quq,7 (Mt+1\t, Et-‘,—lltart-&-l\t, Vi)t At+1\t)



where

K1)t = G,Ut|t + pny
Et+1|t = GZﬂtGI + 277

Tyt

Ft+1|t = | _1

PTIEﬂEt+1|t

Vit
Vi1 =

Un
A Atlt + Ftltztltrglt - Ft‘tJthﬂtF;‘t Ft|t‘]t277r;7

t+1]t — _
L%, Ji0y, Ay +T,%,T) — FnEnEtﬁman;

and the update step distribution (see [Rezaie & Eidsvik| (2014]))

T41)t4+1 CSNp,q, (Mt+1|t+17 Zt+1\t+1, Ft+1|t+17 Vig1t+1, At+1|t+1)

where

Pgtjes1 = Her1e + K
Ser1fir1 = Segafe — DegrpF (FEppq F' + Es)_lFZt+1|t

Ft+1|t+1 = Ft+1\t
Vig1|t+1 = Vi1t — Ft+1|th

At-|-1|t-~-1 = At-|-1|t~

2.2. Preliminary theorems and lemmas

Theorem 1.

xt|$t+1; Dt ~ CSN(Mdt, Edt7rdt7 Vdt, Adt)

10



with

Mdt = M) + Et\tG/Et;lm(mHl - G,Ut\t )
Sat = S — S G’ .G

t+1|t
Ty
Ly = |
-I,G
v | N el gy
Vg — tle ) tltt|t tj—l\il (@11 — Ghap — i)
1/77 F"] —FnGEt‘tG Et+1|t
_ Vet — Ft|t2t|tG/E;_11\t($t+l - G,Ut\t — M)
vy — Iy + FnGztltG/Et;lm(xtH = Gy — pin)
Adt = Ac
N At‘t 0
0 A,

Proof. Our starting point is the equation

xt‘t I 0
= Ty +
Try1|t G n
which is equivalent to

xt|t . I 0 xt|t

Ti41)t G I Tt
———
=A

Firstly, let us find the joint distribution of

Tt

~ CSN(uj, %5, Tjy vy Ag)
Up

11



where,

|t
Hj =
| Hn
¥ 0
x, = t|t
0 %
T 0
T, = t|t
0 I,
Vit
I/j =
Uy
A 0
A = t[t
0 A,

Then, take the linear transformation of the above joint distribution with matrix A.

T
A7) ~ CSN(a, Ba, Ta, va, An)
Nt
where,
K|t
pa = Ap; = |
Gugje + iy
[ b)) G
So=ASA = | "
_GZW GztltG/ + 277
r 0 I 0 r 0
= ].—‘inl _ t|t _ t)t
0 Fn _G I _]'—‘WG Fn
Vit
VA =V; =
Vn
A 0
As=A; = t|t
0 JANS

Using the rules for conditional distributions (property 5 of the paper) we obtain

$t|$t+1, Dy ~ CSN(,Udt, Yat, Lat, vat, Adt)

12



Using the notations above and some simplifications, we can rewrite out theorem as follows:
w¢|wir1, Dy ~ CSN(pas, Xag, Lag, Var, Dat)
with

par = peje + Je(Ter1 — pegage)
Yar = Xy — JiGEy

Ty
I,G

La =

Vat = Vey1)e — Dep1)e(Ted1 — Bera)e)
Atlt 0
0 A,

Ag =

Theorem 2. The following equality holds,
D(Tpp1ye+1 (Tea1 — fes1)e41); Vi1 je 10 Degaperr) = @05 var, Mgy + LaeXaeTyy)
or, equivalently,
(05 vp1je1 — Degapegr (Tea1 — pegajern)s Degajerr) = @05 var, Aar + LarXarLoyy)-
Proof. We rewrite each expression in more basic terms. For the left hand side we obtain

Costjea1 (@1 — feser1) = Deprje(@err — pesape — SepreF (FSe1 e F 4+ 20) 7 (Wegr — Frugap))

Vig1)t+1 = Vid1|t — FtJrl\tZtJrl\tF/(FEtJrlﬁF/ + Ea>_1(yt+l - FUt+1|t>

A Ay + Lo Ze Ty, — DB G S, G2yl BT I Y o i
t+1)t+1 = -1 1
(_FtltZtItGlthnZnF%)/ Ay + Fnan;; - Fn2n2t+1|t

13
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Hence,

Vertjerr — Derrjern (Tee1 — porajer1) = Ve — Degage(Tee1 — fegage)

1y —1
[ e Ft|t2t|tG Et+1‘t (@esr — i )
= - t+1 — M1t
v r,s, ot o
n neEn Syt

Iy —1
Vgt — Ft\tzt\tG Et+1|t($t+1 - Mt+1|t)

-1
vy = TnEn 0 (@1 — fhegage)

and for the right hand side we get

Vet — Ft|t2t|tG/2;r11\t($t+1 - Gﬂt\t - /~Ln)

Vit =
Up — Fn + FnGzﬂtG/Z;rll‘t(thrl - CTV/Mt|t - /1'77)
!
Age 0 I, _ Ly
Agi +TasXa Ly = . + " (B — Et\tGlztfutGZt\t) i
0 Ay -I,G -I,G

Closer inspection shows that both expressions are the same.

Theorem 3.

top __
Vpip = Vet — Degrje(Begyr — pesge)

where I/tTO‘pT are the top t + 2 elements of vp|r such that the dimensions fit.

Proof. Note that

Kt = pgpajer — Her1ge

For period T'— 1: It can be easily seen that this equation holds:

Vrir = Vrir—1 — FT|T—1(/~"T\T - HT\T—l)

14



For period T'— 2: We will start with equation above

top __
Vpir = vrir—1 — Lre—1(wrr — prir-1)

Vr—1|T-1 FT—l\T—lefl
= - -1 (MT|T - MT|T—1)
Un FnznZﬂTq

We can now take the first row and the corresponding V;?ll%:

top __
Vpip = vr-17-1 — Pr—yr—1Jr—1(prir — prjr-1)

=Vvpr_ir-2 — I‘T—1|T—2KT—2 - FT—l\T—QJTfl(NT|T - /~LT\T—1)

=vr_yr—2 — Pr_yr—o|Kr—2 + Jr—1(prr — ,LLTT—l)]

=vr_yr-2 — Dr_yr—o|Hr—1j7—1 — Pr—1j7—2 + J—1 (T — ,UTTI):|

=vr_yr—2—Ur_yr—2|tr—1r — NT1|T2:|

For period T'— 3: We will start with equation above

top __
Vpir = vr—1r—2 — Dr—yr—2(tir—yr — pir—1j7-2)

Vr_2|7-2 FT—2|T—2JT—2
- 1 (#T—l\T - NT—1|T—2)
Vn FnEnETfquz

15



We can now take the first row and the corresponding V;Ol’%:

top __
Vpir = Vr—2r—2 — Dr_ayr—aJr—1(pr—yr — pr—1j7-2)

=vp_gir—3 — Ur_gr—3Kr_3 — Tp_oyp_sJr_o(tr—17 — pr—1j7—2)

=Vr-27-3 — FT—Q\T—s Kr_3+ JT—2(MT—1|T - ,LLT—1|T—2):|

=Vro|T7-3 — FT72\T73 Hr—2|T—2 — HT—2|T—3 + JT—Q(NT71|T - ,UT1|T2):|

=Vr-2|7-3 — FT72\T73 HT—2|T — MT2T3:|

For period (any) t: We will assume the following holds for ¢ + 1:

top __ T
Vpir = Vit2lt+1 — t+2|t+1(ﬂt+2|T - Mt+2\t+1)
We will start with equation above

top __
Vpir = Vvt — Deaaferr (Betoir — Het2per1)

Vit1je+1 Ft+1|t+1Jt+1
= - 4 (Mt+2\T - Mt+2|t+1)
Un Fn2n2t+2|t+1
top |

We can now take the first row and the corresponding Vi

top __
Vpir = Vet — Destjer Jeea (Beg2ir — fes2jes)

= Vgt — Do 5 — DogappJerr (eoir — Hes2)e41)

= v — Degape [ Kt + Jeg1 (pegoyr — ﬂt+2|t+1):|

= Vet — Ft-‘,—l\t Mt1ft+1 — Bepe + Jt+1(ﬂt+2\T - ,Ut+2|t+1)}

= Vet — Deape | e — Mt+1t]

16



Lemma 1. For any t, the following holds,

Ty 0 Tt Mt
@ th(fﬂt - Hdt); Vdt, Adt] =0 | - |

-I,G T, Tyl Het1|T

Vg1t — Ft+1|t(Mt+1\T - Mt+1\t)7
At|t 0
0 Ay

where,

T = )t + Et|tG/Z;r11|t(Mt+l\T — Mit1t)
which will coincide with first parameter of the distribution of Xy .

Proof. Note that I')/GJ; — T, = _Fnznzt_-s-lut'

@ [th(l"t - Mdt); Vdt, Adt:|

Ty

-T,G

= [Ptt(ﬂﬁt - ,Ut\t); Vit At|t:| x @ [ - FnG(fEt - Mt|t) + Fn(ﬂftﬂ - Mt+1\t>§ vn, Ay

Ft\tJt Ft|tJt At|t 0
= (Tt41 — Mt+1\t); Vir1)t — 1 (Te41 — Mt+1\t>7
-I',GJ; Fn2n2t+1|t 0 A,

(w — Mt|t) -

17



Let us expand these cdfs

P [Ft|t($t - Mt\t)? Vit Att] X @ { - F,,G(a?t - ,ut|t) + Fn($t+1 - Mt+1|t)§ Vn, An]

= [Ftt(xt = e — Je(perrr — Begage)); Vepe — DepeJe(Begryr — Hegage)s Att]

X @ —=ThG(we — pege — Je(perrr — perrge) + Je(pernr — pega)e)) + Dn(@esr — fieen)r + fer — ferage); Vs An}

= @Dy (e — per); vee — Dopede (o) — Hegr)e)s Dege

x O —T,G(xy — pyyr) + Uy(zep1 — pgryr) — Dy GIe(pagryr — tagrpe) + T (begrjr — Hes1ye); Vs An]

=® Ft\t(xt - Nt\T)% Vit — Ft|tJt(Mt+1\T - Nt+1|t)7 At|t

x ® { =G (@ — por) + Ty(mer — preyryr); vy + (CnGJe = Ty) (o1 — Besa)e)s An}

Tye O Ty fe|T Ade 0
_ ¢[ | — | P Vit — Ft-|-1|t(,ut-i-1\T - Nt-&-l\t)v |
-I,G T, Tyt Hi41|T 0 B

Lemma 2. As to the product of two normal pdfs, we obtain for any t

Tt
¢{$t; Hdt Edt] X ¢{l‘t+1; Ht1|T Et+1T:| =¢[ ;
Ti41

e + Je(peg1 — Hega)e)
Her1|T

St + Je(Eigar — Bi)Jf TS (@)

/
Yyt Yt
where,

Hi|T = Hift + Zt\tG/Et_.:Ht(UtJrHT — fey1)e)
Yo = Xy + Zt\tG/E;rl”t(EtJrnT - Et+1\t)z;+11‘tGZt|t

which will coincide with the first two parameters of the distribution of Xy .

Proof. Recall the conditioning theorem for Normal distribution. Let X ~ N, (1, Q) be partitioned into X

18



of length p; and X5 of length ps, such that X = (X7, X}). The parameters are partitioned accordingly,

Q Q
o= U1 - 11 o ’
o Qo1 Qoo

Then,
Xijg = (Xi]| X2 = 22) ~ Ny, (¥1)2, 2)

with 12 = ¥1 + Q12055 (22 — 1) and, Qyjp = Q11 — Q12055 Doy

Now, let us write left hand side of equation [4|in more basic terms and add/subtract some of its expressions,

4%; e + Je(Ter1 — fregage)s Sepe — JtGEtt] X QS{Tt-&-l; Ht1|T Zt+1T:|

= Q{xt;
-1
peje + e BB (Ter1 = By + B = e,
-1 -1 / -1 /
Et\t - Jt2t+1|t Et+1|tG2t\t +Jt2t+1\TEt+1|T2t+1\TJt - Jt2t+1|T 2t+1|TEt+1|TJt}
————— ~——
=J/ analogous to Q15

X¢{It+1; Ht41|Ts Dtt1|T
= ¢{$t;

peje + Je (e — o) + Jeleap E;rl”t(l"tﬂ — Hg1|T)s
~— N——"

analogous to Q12 Q-1
22

Sie — el ] + I rdi — Jt2t+1\TZ;_,_11|TEt+1|TJt'

Xp |:xt+1§ Ht41|T> 2e41|T

At this point, it is trivial to get the equation of lemma, if we use the reverse of the conditioning theorem for

Normal distribution.

Lemma 3. The equality below holds,

Agt + T Xa Ty, = AVIRIIRE (5)

19



Proof. We will write Ag + T'3:Xq:I", in more basic terms and evaluate:

AVIPEEN) Ty
+

Age + PdtZth;t = (Et\t — Jtht\t) (F;\t —G/F%>

A, -T,G
N AV N Loe(Bge — JeGEe)ly, —Lep(Eege — JeGEy )G
0 An _FTIG(Et‘t - JtGEt‘t)Fé‘t FnG(Etlt - JtGZtlt)G/F%
At‘t + FtltEtltF:Ht - FtltJtGEtlthﬂt —Ft‘tzt‘tG'F% + Ft‘tzt‘tG,Et_—:Ht Gzt‘tG/ F;]
N——
— :Et+1\t—2n
—T,GEy Ly, + 1Ty GG ztjmc:zﬂtr;'t Ay +T, GG T, —T, GZyG E;jllt GG T,
N—— N—— —— N——
:Et+1\t—2n :Et+1\t—2n :Et+l|t_2n :Et+1\t—2n
_ At‘t + Ftltztltl—‘;lt - FtltJtGZtltF:ﬂt Ft‘tjtznl—‘;]
L2, iy, TAVIR SR K030 BARSS W 2 Dl 3 oA
= At-|-1|t
= At+1|t+1
O

2.8. Smoothing formulas for period T-1

In the final period, xp|7 is both the filtered and the smoothed distribution. This is where the backward

recursion kicks in.

First, consider the penultimate period T'— 1. The conditional density of zp_1|zr, Dr—1 is (see theorem

S(Cgr—1(xr—1 — ptar—1); Var—1, Dar—1)
O(0; vgr—1, Adgr—1 + Lar—1Zar—11,_4)

d(rr—1;5 phdT—1, XdT—1)

where both pgr—1 and vgr—; are functions of 7. To find the distribution of xy_1|Dr we average the density

of rr—1 |$T, DT_1 over $T|DT7

/ ®(Tar—1(@r—1 — prar—1); var—1, Dar—1) Crr(@r — pryr);veir, Arr)
®(0; var—1, Agr—1 + Lar—1Xar 1T 1) ®(0;vrr, Arir + DrprXri el 1)

X ¢(x7—1; phar—1, Bar—1)¢(xT; pr|7, Xry7)dTT.

Due to theorem [2] the top right cdf and the bottom left cdf are identical,

O (Tryr(zr — pryr); veyr, Aryr) = @03 var—1, Aar—1 + Tar—1Xar—1Lyp_1).
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Having cancelled the cdfs, the integral simplifies to

O(Tyr— 11— _1); 1. Agr—
/ (Car1(er_1 = par—1)ivar-1, Aar-1) X ¢(xr—1; par—1, Bar—1)¢(2T; prj7; Xy ) dTT -

@(0; vy, Apir + FT|TET|TF/T|T)

We first look at the joint distribution of 27— and z7 (given D) and then marginalize. Let pjr—1, Ejr—1,

T'jr—1, vjr—1, Ajr—1 denote the parameters of the joint distribution. Obviously, (after using lemma [2))

pr—17—1 + Jr—1(prir — prir—1)
HiT—1 =
HT|T

Sroyr—1 +Jr1 (e = Spr-1)Jry Jr-1Zor

Yiro1=
Srirdp_q S

Less obvious, but still relatively straightforward (use the lemma [1| and the lemma [3)),

Fr_yr—1 O
T,G¢ T,

Ljr_1

Vir—1 = VT

AT T 0
Aij 1= 1l !
0 An

The marginal distribution of z7_1|Dr is (obtained using lemma 2.3.1 of |Genton| (2004)))

pr—1r = pr—1j7-1 + Jr—1(prir — prir—1)
Sroir = Sr—1r-1 + Jr—1Err — Err-1)Jr_1

Pr -1

Lr_qr =
Nr_y

Vr—ir = VT

Ar_qj7-1 0
Ap_yr = | _
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where

Nr_y = TG +TyMr_,
Mr_y = Spprdr 137k,

Ly_1 = Ypp — My 1Sy o My

and
AT,1 = An + FnLTfll—‘;].
2.4. Smoothing formulas for period T-2
Now consider period T — 2. The conditional density of zp_s|xr_1, Dr_o is

(T gr—2(xr—2 — tar—2); Var—2, Dar—2)
O(0; var—2, Agr—2 + Lar—2Xar o1 _5)

d(Tr—2; har—2, Zar—2)

where pgr—o and vgr_o are functions of xp_q. To find the distribution of xp_o|Dr we again derive the

joint distribution of z7_o and zp_1 given Dy,

O (Lgr—o(xr—2 — ptar—2); Var—2, Dar—2) ®Cr_yr(x7-1 — pr_17); vr—1)75 Ar_1)7)
®(0; var—2, Agr—2 + Lar—2Xar 2T o) ®(0;vr—1y7 Ar—yyp + Dr—yrEr—yr g p)

X @(x7_2; par—2, Bar—2)¢(Tr—1; 1|7, Xr—1|T)-

According to theorem [3| and lemma [l| for ¢t =T — 2, the top left cdf can be rewritten as

O(Tgr—o(xr—2 — par—2); Var—2, Dar—2)

Fr_gr—2 O Tr_2 HT—2|T . top Ar_or—2 0
- YT
-G Iy Tr—1 Hr—1|T 0 Ay

=

The top right cdf can be factorized as

1—‘T—l T-1 AT—l T—1 0
S(Cp_yr(@r-1 — pr—1y7); V1)1, Ar—1)7) = @ | (x7—1 — pr—17); V1|1 | _
Np_4 0 Ar_y
= O(Tr_yjr—1(x7-1 — pr—1|7); VtTOf}, Ap_ij7-1) (6)
X ®(Np_1(xp_1 — MT—UT);V%?,ATA) (7)

. . o . top btm
where v7|7 is suitably partitioned into Vot and VpIT
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Next, turn to the bottom left cdf. Using theorem [2] and theorem [3|it can be shown that

®(0; var—2, Aar—2 + Tar—2Xar—2Tyr o)
= O(Tr_yr—1(xr—1 — pr—1j7=1); Vr—1j7-1, Dr—1]7-1)
= (I)(FT—1|T—1($T—1 — Wr—1T + pr—1)T — MT—1|T—1); Vr_1T-1, AT—1|T—1)

= (I>(FT—1|T—1(17T—1 - .UT—1|T)§ Vr—1r-1— FT—l\T—l(,UT—1|T - ,UT—1|T—1)a AT—l\T—l)

and

Vr—117-1— FT—1|T—1(MT—1\T - MT—l\T—1)
=vr_yr—2 — Dr_yr—2Kr o — Ur_yjr—o(pir—1j7 — pr—1j7—2 — K17-2)

=vp_1r—2 — Ur_1jr—e (o117 — Hr—17-2)

__ top
=Vrr

As a result, we have

D(0; var—2, Aar—2 + Lar—2Xar—oTlr_o)

= ®[Tp_yp—1(xr-1 — pr—1j7); V%ﬁ?} Ap_1j7-1)

Therefore, the first part of equation [f] and bottom left cdf cancel each other out.

The remaining part of the top right cdf can be merged into the top left cdf. This results in the numerator

Tr_gr—2 0 Ar_or—2 0 0
Tr—2 — HT—2|T
¢ -I,G r, r vr|T) 0 A, 0
Ir—1 — Ur—1|T ~
0 Nr_4 0 0 Ar_y
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Let pjr—2 etc denote the parameters of the joint distribution,

pr—2ir—2 + Jr—2(pir—1)7 — pr—1)7—2)
HiT—2 =
HT—1|T
5 Sr_or—2+ Jr—2(Er 11 — Xr_yr—2)Jr_ o Jr2Xr_qr
JT—2 =
Sr_1rdr_o Yroqr
Tr_gr-2
Lir—2=1 -T,G r,
0 Np_y

ViT—2 = Vr|T

Ajr_o = 0 A, 0

The marginal distribution of xp_o|Dyp is

pr—oir = pr—2r—2 + JT—2(pir—1)7 — Hr—1]T—2)
Sr_or = Sr_or—2 + Jr—2(Er_1j0 — Sr_1jr—2)Jr_o

Ir_gr_2
Fr_gr = Nr_s
Np_1Mr_2
Vr_o|T = V1|T

Ar_oir—2 0

Ap_gp = _
0 Ar_s
with
Nr_s = —T,G +TyMr_»
My o = ET—1|TJ§‘722;£2|T
Lo =%p_ 11 — Mp_oXp_orMp_,
and ,
- A 0 I I
Arp_g = T + K !
0 AT,1 NT71 NTfl
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2.5. Smoothing formulas for period T-3

Consider period T'— 3. The conditional density of xp_s|zp_o, Dp_3 is

®(Cgr—s(xr—3 — ftar—3); Var—3, Aar—3)
O(0; vgr—3, Adgr—3 + Lar—3Xar—3Ip_3)

A(T7—3; pdT—3, LdT—3)
where pgr—3 and vgp_s are functions of xp_5. To find the distribution of xp_3|Dp we again derive the
joint distribution of xp_3 and zp_o given Dy,

DT yr—s(@r—3 — prar—3); var—3, Dar—3)  PCr—or (@72 — pr_2i7); vr—27, AT _2/7)
®(0; var—3, Agr-3 + Lar—sXar sy _3) @(0;vr_oir, Ar—oir + DrogirEroir Ly 7)

X G(x7_3; phar—3, Bar—3)S(vr—2; fir—27, Lr—2|T)-

According to theorem [3] and lemma [I] for ¢ = T — 3, the top left cdf can be rewritten as

ST ar—s(xr—3 — tar—3); Var—3, Dar—3)

_ % Fr_37r-3 O TT-3 HT-3|T top Ar_gr-3 0
- - YT
-r,G T, TT_2 HT—2|T 0 Ay

The top right cdf can be factorized as

Fr_gr-2
Ar_g7—2 0
S(Cp_gr (72 — pir—2i7); Vr—2/7, Ar—2)7) = P Nrp_s (x1r—2 — pr—2i7); VT, . A
T—2
Np_1Mr_o

= ‘I)(FT—2\T—2(5UT—2 - ,LLT—2|T>; l/tTOf}, AT—2|T—2)
Nr_o

Lo btm A
x O (xr—2 — ,U'T—2|T)a Vr|r» A7 _s
Np_1Mr_s

. . iy . top btm
where vy |7 is suitably partitioned into Vrir and VpIT

Next, turn to the bottom left cdf. Using theorem 2] and theorem [3] it can be shown that as we did in the

last section

D(0; var—3, Aar—3 + Lar—3Xar—sTr_3)

= (I)(FT—2\T—2(17T—2 - ,UT—2|T)§ V;Oﬁn AT—2|T—2)

Therefore, the first part of factorization of top right cdf and bottom left cdf cancel each other out. The
25



remaining part of the top right cdf can be merged into the top left cdf. This results in the numerator

Ir_37-3
r o r Ar_3r—3 0 0
- TT-3 — HT-3|T
o ! ! | vmie, 0 A, 0
0 Nr_o Tr—2 — pr_2|T -
0 0 Ar_
0 Nr_1Mr_5

Let pjr—3 etc denote the parameters of the joint distribution,

pr—3jr—3 + Jr—3(pr—2ir — Hr—2/7—3)
HiT—3 =
HT—2|T
5 Yr_gir—3 + Jr_3(Ep_or — Er_or—3)Jr_3 Jr_3Sp_gr
T3 =
Sroordr_3 oo
Pr_37-3
-G T
FjT_,?, — n n
0 Nr_s
0 Np_1Mr_o

Vir-3 = V1T

Ajr_s = 0 A, 0

The marginal distribution of xp_3|Dyp is

pr—3ir = pr—3j7—3 + Jr—3(lr 2/ — Hr_2/T-3)
Sr_air = Sr_gir—3 + Jr—3(Er_or — Xr_or—3)Jr_3
Ir_37-3
Nr_3
Np_oMp_3
Nr_1Mr oMt 3

Lr_gr =

Vr_3iTr = Vr|T

Ap_3i7-3 0

Ar_gr = _
0 Ar_3

26



with

A, 0 b b
AT—3 = On A + NT,Q LT—B NT,Q
T-2
NT_lMT_g NT—lMT—2

(note that the dimension of Ar_y is just large enough to make the sum fit).

2.6. Smoothing formulas for period T-4

Guess for CSN parameters of xp_4|Dp:

pr—ajr = Pr—ajr—a + JT_a(pr_3)7 — Hr—3)7—4)
Sr_ar = Er_air—a + Jr-a(Er_sir — Sr_gir—a)Jp_4
Pr_gr-4
Nr_4
Pr_yr = Np_sMr7_4
Nr oMy sMr_4
Np_1Mr_oMr_3Mr_4

Vp_4T = V|IT

Ar_yr-a 0

Ar_yr = ~
0 Ar_y
with
Iy Iy
. A 0 Np_ Np_
Ap_y = T + s Lr_y e
0 Ap_s Np_oMr_3 Npr_oMr_3
Nr_Mr_oMr_3 Nr_Mr_oMr_3
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2.7. Smoothing formulas for any time period

The CSN parameters for x;|Dr are

e = tefe + Je(perr) T — fegire)
Yyr = Sy + Je(Sppar — Et+1|t)J£
Ty
Ny
Ny My

Tyr =
Niyo My My

Nr_1-...- MygoMy 1 My

yr =vVr|T

At|T = | ~
0 A
with
r, r,
- A 0 N, N,
A, = n n t1 I, t+1
0 A Nipo My Niyo Mt
Npr_1-...- MyoMiyq Nr_1-...- My oMy
with
Jt = EtltG/EtiFll‘t

M, = EHHTng;u{
Ny = -T,G + T, M,

Ly = Yy — MyXyr M

2.8. More compact formulas for any time period

We can write the formulas for general ¢ more neatly via the following steps:

e Replace J; with 3,,G'S. .
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e Replace L; with ZtJrHT — Mtzt\TMt/

N,
e Define O; = K with Op_1 = Npr_; (Note that O is not defined)
Ot 1 My

After implementing the above steps, it is easy to see that we get:

A EtltG/E;r11|t(Mt+l\T = Hey1)e)
Sy = Sy + oGS (Begrr — Serae) By, G4

Ty
Tyr = |
Oy
VT = V1|T
At\T = | ~
0 Ay
with
/
. A 0 r r
Ar=|" + ! (Big1r — M Xyr M) !
0 At+1 Ot+1 Ot+1
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