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Abstract

The skewed Kalman filter (SKF) extends the classical Gaussian Kalman filter (KF) by accom-

modating asymmetric (skewed) error distributions in linear state-space models. We introduce a

computationally e!cient method to address the curse of increasing skewness dimensions inherent

in the SKF. Building on insights into how skewness propagates through the state-space system,

we derive an algorithm that discards elements in the cumulative distribution functions which do

not a"ect asymmetry beyond a pre-specified numerical threshold; we refer to this approach as the

pruned skewed Kalman filter (PSKF). Through extensive simulation studies on both univariate and

multivariate state-space models, we demonstrate the proposed method’s accuracy and e!ciency.

Furthermore, we are first to derive the skewed Kalman smoother and implement its pruned variant.

We illustrate its practical relevance by estimating a linearized New Keynesian DSGE model with

U.S. data under both maximum likelihood and Bayesian MCMC frameworks. The results reveal

a strong preference for skewed error distributions, especially in productivity and monetary policy

shocks.
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1. Introduction

The Kalman filter is a highly e"ective recursive procedure for making inference about state

vectors, which can then be used to precisely compute the Gaussian likelihood function. The filter

is optimal in the sense that it minimizes the covariance matrix of one-step ahead prediction errors.

More importantly, the Kalman filter can be executed swiftly and e!ciently from an applied and

computational standpoint. However, non-Gaussianity—such as skewness—characterizes many time

series frequently employed for estimating linear state-space models in real data applications. As a

result, it is necessary to adjust the state-space modeling framework and algorithms to accommodate

skewness in the error term distribution.

In this context, the closed skew-normal (CSN) distribution proposed by González-Farías et al.

(2004b) serves as an appropriate candidate, as it extends the Gaussian distribution by introducing

skewness while maintaining key properties of the normal distribution, see e.g. Azzalini & Capitanio

(2014) and Genton (2004) for excellent textbook introductions. Notably, this distribution nests

both the normal as well as the widely-used skew-normal distribution of Azzalini (1985) and Azzalini

& Dalla Valle (1996) as special cases. Since the three fundamental tools for implementing the

Kalman filter are closure under linear transformation, summation, and conditioning, utilizing this

distribution enables the development of closed-form recursions that closely resemble the Gaussian

Kalman filtering steps (Naveau et al., 2005).

However, applications are usually limited to univariate settings and simplified model assump-

tions. We posit that this is primarily due to a computational challenge we refer to as the curse of

increasing skewness dimensions, which we address in this paper. Essentially, the issue arises from

the fact that the probability density function (pdf) of the CSN distribution has two dimensions,

resulting from the multiplication of a Gaussian pdf by the ratio of two Gaussian cumulative dis-

tribution functions (cdf). While the Gaussian pdf reflects resemblance to the normal distribution,

the skewness dimension originates from the Gaussian cdfs. Even though evaluating Gaussian cdfs

is a well understood task, it can become numerically di!cult and infeasible if the dimension of

a cdf becomes very large. It does so, because the sum of two CSN distributed variables remains

within a CSN distribution, yet the resulting skewness dimension consists of the combined sum of

the individual dimensions of each variable. And this manifests the core challenge intrinsic to the

skewed Kalman filter, as in state-space models this dimension grows swiftly and may even explode
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as the recursion proceeds over many time steps, a point recently echoed by Amsler et al. (2021)

for the skew-normal distribution.

To address this challenge, our primary contribution is to derive a computationally e!cient

method for approximating the updating distribution of the skewed Kalman filter by reducing the

skewness dimension at each iteration. Our algorithm relies on the fact that a CSN distributed

random variable can be represented as a conditional distribution of two normally distributed vari-

ables. Intuitively, in this representation, the correlation between the two random variables intro-

duces asymmetry and skewness. When the correlation is high, the asymmetry of the conditional

random variable, which is CSN distributed, is also large. However, when the correlation is low, the

symmetry is minimally a"ected, and the CSN distribution closely resembles the Gaussian distribu-

tion. In the extreme case with no correlation, the conditional random variable will be identical to

a normally distributed one, causing the skewed Kalman filter (SKF) to morph into the Gaussian

Kalman filter (KF). Our approach is hence based on a low numerical threshold, such as 1% in

absolute value, at which we discard weakly correlated elements in the skewed Kalman filtering

steps, as they do not substantially distort symmetry. By doing this, we e"ectively decrease the

overall skewness dimension by the number of pruned variables, making the skewed Kalman filter

applicable for multivariate state-space models without any restrictive assumptions or constraints

on the state-space system. We refer to this algorithm as the pruned skewed Kalman filter (PSKF).

Our second contribution is to analytically demonstrate how skewness propagates through the sys-

tem, providing motivation and derivation for the algorithm. Lastly, our third contribution is to

derive the skewed Kalman smoother. To our knowledge, we are the first to provide closed-form

expressions and, more importantly, to implement the smoothing steps using our pruning concept.

We find that our algorithm works well in practice in terms of accuracy, speed, and applicability.

To this end, we provide extensive Monte Carlo simulation evidence in both univariate and multi-

variate settings. When data exhibits skewness, the pruned skewed Kalman algorithm (i) filters and

smooths the unobserved state vector more accurately than the conventional Kalman algorithm,

(ii) requires only marginally more time than the Gaussian Kalman filter to evaluate the likelihood

function, and (iii) o"ers precise maximum likelihood estimators for the shock parameters in finite

samples. Importantly, in simulation studies where the SKF can also be used as a benchmark, we

demonstrate that the approximation error introduced by our pruning scheme is negligible.
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Finally, we illustrate the usefulness of the pruned skewed Kalman filter and smoother by esti-

mating the linearized New Keynesian Dynamic Stochastic General Equilibrium (DSGE) model of

Ireland (2004).1 The reasons for choosing this model are threefold. First, it allows analysis of typ-

ical macroeconomic shocks (preference, cost-push, productivity, and monetary policy) in a stylized

framework that remains representative of modern macroeconomic models while preserving clear

intuition. Second, the model can be estimated via both maximum likelihood and Bayesian Markov

Chain Monte Carlo (MCMC) methods, enabling a straightforward comparison of the PSKF across

di"erent estimation frameworks. Third, the exact same model and dataset has been used by Chib

& Ramamurthy (2014) under the assumption of a multivariate Student-t distribution for the struc-

tural shocks—capturing excess kurtosis but not skewness. Our estimation results reveal substantial

asymmetry in the distributions of productivity and monetary policy shocks. This finding aligns

with suggestions by Curdia et al. (2014) and Lindé et al. (2016), who hypothesize that skewness

might be a salient feature of the shock distribution, but do not account for it in their estimation

procedures as we do here.

Our presentation and implementation of the pruned skewed Kalman filter and smoother are

designed to remain highly general, mirroring the simplicity of the standard normal Kalman filtering

and smoothing routines. In terms of modeling, researchers can retain their linear state-space

framework while introducing additional flexibility by assuming a CSN distribution for the error

terms in the state transition equation (the Gaussian and skew-normal case being nested). On the

computational side, any estimation procedure—whether Bayesian or Frequentist—that employs

Kalman filtering can be readily adapted by replacing the underlying Kalman filtering routine.

To facilitate widespread use, we provide model-independent implementations of the pruned

skewed Kalman filter and smoother in Julia, MATLAB, Python, and R.2 Notably, we have also

developed a toolbox that integrates the pruned skewed Kalman filter and smoother into Dynare

(Adjemian et al., 2024)—the leading software for estimating DSGE models—making it compatible

with both maximum likelihood and Bayesian MCMC methods.3

1In an older working paper version (Guljanov et al., 2022) we also estimate the multivariate Dynamic Nelson-

Siegel (DNS) term structure model of Diebold et al. (2006), demonstrating that the data strongly favor a skewed
distribution for the error terms of all three yield curve factors. Likewise, in his PhD thesis, Guljanov (2024) estimates
a more complex DSGE model with a richer set of features, shocks and observables—the (Smets & Wouters, 2007)
model—using the PSKF and Bayesian MCMC methods.

2Code available at: https://github.com/gguljanov/pruned-skewed-kalman.
3This feature is planned for release in Dynare 7.0; see https://git.dynare.org/wmutschl/dynare/-/tree/pskf.
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Related literature

On the one hand, the (closed) skew-normal distribution has been applied in various disciplines,

such as property-liability insurance claims (Eling, 2012), growth-at-risk analysis (Adrian et al.,

2019; Wei et al., 2021; Wolf, 2022), mental well-being studies (Pescheny et al., 2021), modelling

psychiatric measures (Counsell et al., 2011), risk management (Vernic, 2006), stochastic frontier

models (Chen et al., 2014; Zhu et al., 2022), stock returns (Chen et al., 2003), and multivariate time

series econometrics (Karlsson et al., 2023). On the other hand, the skewed Kalman filter is rarely

used in practice, despite its considerable potential and simplicity of implementation. Particularly,

in economics and econometrics, the literature is very sparse, with Cabral et al. (2014) examining

UK gas consumption and Emvalomatis et al. (2011) estimating dynamic e!ciency measurements

in agricultural economics as notable exceptions.

Naveau et al. (2005) and Cabral et al. (2014) formulate skewed Kalman filters based on the

CSN distribution for linear state-space systems, but assume the CSN distribution for the initial

state vector only. Interestingly, in this scenario, the skewness dimension remains constant, allowing

for a straightforward derivation of the Kalman filtering steps without encountering the curse of in-

creasing skewness dimensions. However, we demonstrate that the impact of the initial distribution

and the level of skewness dissipate rapidly over time, which is not commonly observed in real data

applications. Alternatively, Naveau et al. (2005) devise an extended univariate state-space model

by dividing the state vector into linear and skewed components, enabling filtering without an explo-

sion in the skewness dimension. Kim et al. (2014) later extend this approach for mixtures of skewed

Kalman filters. Nonetheless, general state-space models, like the reduced-form representations of

structural economic models, cannot be transformed into this extended form, and it is also subject

to the curse of increasing skewness dimensions. Moreover, they only provide numerical examples

in univariate settings, whereas we provide simulation evidence and real data applications in mul-

tivariate frameworks. Another approach proposed by Arellano-Valle et al. (2019) is to incorporate

the CSN distribution into the measurement equation, while still modeling state transition shocks

as normally distributed. However, ample evidence in economics suggests that skewness primarily

originates from innovations rather than measurement errors, rendering their approach unsuitable

for broader contexts. Finally, Rezaie & Eidsvik (2014, 2016) develop skewed unscented Kalman

filters for nonlinear state-space systems and discuss computational aspects. They contend that, for
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practical purposes, one must either assume simplified conditions or refit the updated distribution.

In this paper, we specifically choose to employ the latter strategy.

In the DSGE literature, Lindé et al. (2016) emphasize the importance of moving beyond Gaus-

sian assumptions, noting that the shocks driving most recessions are non-Gaussian. Chib & Rama-

murthy (2014) and Curdia et al. (2014) demonstrate that linearized DSGE models with Student-

t-distributed shocks can outperform their Gaussian counterparts. We show that this improvement

also holds when skewness is accounted for. Similar to us, Grabek et al. (2011) augment a linearized

DSGE model with CSN innovations, but propose an ad-hoc two-step estimator. Our approach is to

directly utilize the SKF without relying on auxiliary estimation steps that might bias the estimation

results.

Naturally, there are several other methods and algorithms for statistical inference of time se-

ries with asymmetric distributions. For example, sequential Monte Carlo methods can be easily

adapted to skewed distributions, although the computational complexity and runtime of these fil-

ters increase rapidly with the state dimension. Skewness can also be modeled using a mixture of

normal distributions, for which numerous filtering algorithms exist. However, as recently noted

by Nurminen et al. (2018), Gaussian mixtures have exponentially decaying tails and can be overly

sensitive to outlier measurements, while the computational cost of a mixture reduction algorithm

is substantial. Bayesian methods are often tailored to specific modeling frameworks and assump-

tions, enabling fine-tuning of certain sampling algorithms, such as combining a Gibbs sampler with

Metropolis-Hastings stages, as exemplified in Karlsson et al. (2023) for Vectorautoregressive mod-

els. We do not assert that the PSKF inherently outperforms these approaches, but we contend

that its ease of use and compatibility with existing toolboxes and standard estimation methods

will promote its adoption across various disciplines.

Structure

The paper is organized as follows. Section 2 provides an overview of the closed skew-normal

(CSN) distribution, introducing its representation and main properties. Although no new results

are presented there, it serves as a primer on the distribution and establishes the notation and

concepts needed for filtering and smoothing. Section 3 presents the closed-form expressions for

both the forward and backward recursions of the skewed Kalman filter and smoother. While the

filtering steps follow Naveau et al. (2005) and Rezaie & Eidsvik (2014), the smoothing steps are
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novel. Next, Section 4 contains our main contribution as we show how skewness propagates through

the state-space system over time and use this insight to develop our pruning algorithm. Section 5

summarizes the main Monte Carlo findings (with detailed results in an online appendix), while

Section 6 contains the estimation of the linearized New Keynesian DSGE model on U.S. data.

Finally, Section 7 concludes with closing remarks.

2. Closed skew-normal distribution

In this section, we summarize the definition and properties of the CSN distribution. The

exposition and notation follow closely González-Farías et al. (2004a), González-Farías et al. (2004b),

Grabek et al. (2011) and Rezaie & Eidsvik (2014). Let E1 → Np(0, !) and E2 → Nq(0, ”) be

independent multivariate normally distributed random vectors. The p ↑ p covariance matrix ! is

positive semi-definite, the q↑q covariance matrix ” is positive definite. Let µ and ω be real vectors

of length p and q, respectively, and # a real q ↑ p matrix. Define

W = µ + E1 and Z = ↓ω + #E1 + E2.

Then 


W

Z



 → Np+q








µ

↓ω



 ,




! !#↑

#! ” + #!#↑







 . (1)

Let the random vector X have the same distribution as W |Z ↔ 0. Then X has a CSN distribution

X → CSNp,q(µ, !, #, ω, ”).

The moment generating function (mgf) of X is

MX(t) = $q(#!t; ω, ” + #!#↑)
$q(0; ω, ” + #!#↑) exp(t↑

µ + 1/2t
↑!t)

for t ↗ Rp and $q(·; m, S) is the cdf of the multivariate normal distribution with expectation vector

m and covariance matrix S. If the covariance matrix ! is non-singular, then X has the probability

density function

fX(x; µ, !, #, ω, ”) = $q(#(x ↓ µ); ω, ”)
$q(0; ω, ” + #!#↑)εp(x; µ, !), (2)
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Figure 1: Density functions of univariate CSN distributions with di"erent skewness parameters
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(b) Γ = 0, ν = 0
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(c) Γ = 5, ν = 0
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(d) Γ = 5, ν = −8

Note: Other parameters are µ = 0, ! = 1 and ” = 1.

where εp is the pdf of a multivariate normal distribution. We do not, however, impose non-

singularity in general.

Figure 1 illustrates the pdf of a univariate CSN distribution with parameters µ = 0, ! = 1,

ω = 0 (or ω = ↓8), ” = 1 and di"erent values for the shape parameter #. We see that, in the

univariate case, the distribution is left-skewed if # is negative and right-skewed if it is positive.

For # = 0 one obtains the (symmetric) standard Gaussian distribution. Similarly, we illustrate

a bivariate CSN distribution with left- and right-skewed marginals in Figure 2 with the following

parametrization:

X → CSN2,2








0

0



 ,




1 0.7

0.7 1



 , #, ω,




1 0

0 1







 .

Note that the mean and covariance of X di"er from µ and ! unless # = 0 in which case the

probability density of the CSN distribution reduces to the Gaussian one. Another special case is
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Figure 2: Density functions of bivariate CSN distributions with di"erent skewness parameters
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Note: (a) # =
[

6 0
0 6

]
, ω =

[
0
0

]
, (b) # =

[
6 0
0 →6

]
, ω =

[
0
0

]
, (c) # =

[
6 6
6 6

]
, ω =

[
0
0

]
, (d) # =

[
6 0
0 6

]
, ω =

[
→6
→6

]
.

given by CSN1,1(0, 1, ϑ, 0, 1) which corresponds to the well-known univariate standardized skew-

normal distribution of Azzalini (1985). To summarize, µ and ! are called the location and scale

parameters of “normal dimension” p, while the dimension q is labelled “skewness dimension”.

Accordingly, # regulates skewness continuously from the normal pdf (# = 0) to a half normal

pdf, with the skewness coe!cient being bounded by ±
↘

2(ϖ ↓ 4)/(ϖ ↓ 2)3/2 ≃ ±0.995. The other

skewness parameters ω and ” are somewhat open to interpretation; however, as we outline below,

they allow to establish closure of the CSN distribution under conditioning (ω), marginalization (”)

and summation (as $q(0; ω, ” + #!#↑) is a constant).

One can see from (1) that the asymmetric deviation of the CSN distribution from the symmetric

Gaussian distribution results from the covariance between W and Z; in other words, it is this

correlation that adds skewness to the Gaussian distribution. Hence, the CSN distribution can be

regarded as a generalization of the normal distribution and as such inherits several of its properties.
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In the following, we review those properties that are of special interest for the skewed Kalman filter

and smoother. Proofs can be found in González-Farías et al. (2004a) and González-Farías et al.

(2004b).

Property 1 (Linear transformation, full row rank).

Let X → CSNp,q(µx, !x, #x, ωx, ”x) and F be a real r ↑ p matrix of rank r ⇐ p such that F!xF
↑

is non-singular, then

Y = FX → CSNr,q(µy, !y, #y, ωy, ”y)

with µy = Fµx, !y = F!xF
↑, ωy = ωx, #y = #x!xF

↑!↓1
y , ”y = ”x+#x!x#↑

x↓#x!xF
↑!↓1

y F!x#↑
x.

In other words, the CSN distribution is closed under linear transformations. If F is p ↑ p square

and if both F and !x have full rank p, the expressions for #y and ”y simplify to #y = #xF
↓1 and

”y = ”x.

Property 2 (Linear transformation, full column rank).

Let X → CSNp,q(µx, !x, #x, ωx, ”x) and F be a real r ↑ p matrix with r > p and rank(F ) = p,

then

Y = FX → CSNr,q(µy, !y, #y, ωy, ”y)

has a singular distribution with µy = Fµx, !y = F!xF
↑, #y = #x(F ↑

F )↓1
F

↑, ωy = ωx and

”y = ”x.

Property 3 (Joint distribution).

Let X → CSNpx,qx(µx, !x, #x, ωx, ”x) and Y → CSNpy ,qy (µy, !y, #y, ωy, ”y) be independent ran-

dom vectors. Then

Z =




X

Y



 → CSNpz ,qz (µz, !z, #z, ωz, ”z)

with dimensions pz = px + py, qz = qx + qy and parameters

µz = (µ↑
x, µ

↑
y)↑ !z =




!x 0

0 !y



 #z =




#x 0

0 #y



 ωy = (ω ↑
x, ω

↑
y)↑ ”z =




”x 0

0 ”y



 .

The joint distribution of independent CSN distributions is CSN again. Together with Property 1

this implies that sums of independent CSN random vectors (with compatible dimensions) are CSN.
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Property 4 (Summation).

Let X → CSNp,qx(µx, !x, #x, ωx, ”x) and Y → CSNp,qy (µy, !y, #y, ωy, ”y) be independent random

vectors. Then

Z = X + Y → CSNp,qz (µz, !z, #z, ωz, ”z)

with dimensions p and qz = qx + qy and parameters

µz = µx + µy, !z = !x + !y, #z =




#x!x!↓1

z

#y!y!↓1
z



 , ωz =




ωx

ωy



 , ”z =




”xx ”xy

”↑
xy ”yy



 ,

where ”xx = ”x + #x!x#↑
x ↓ #x!x!↓1

z !x#↑
x, ”yy = ”y + #y!y#↑

y ↓ #y!y!↓1
z !y#↑

y, and ”xy =

↓#x!x!↓1
z !y#↑

y.

Note that the skewness dimension q increases when two closed skew-normal random vectors are

added. While this does not matter theoretically, it turns out to be a severe numerical problem

since evaluating the density function of the sum involves calculating the cdf of a higher dimen-

sional normal distribution. For practical applications it is therefore indispensable to find a good

approximation with a lower q-dimension, such as we propose in Section 4.

A special case of Property 4 is adding a CSN random vector X → CSNp,qx(µx, !x, #x, ωx, ”x)

to a normal random vector Y → N(µy, !y) = CSNp,qy (µy, !y, 0, ωy, ”y) of length p. For the

normal distribution, the skewness parameter is #y = 0 (and ωy and ”y are irrelevant). Since all

elements of the rows in #z that belong to the normal distribution are zero, the q-dimension can be

adjusted. The resulting formulas for the skewness parameters are: #z = #x!x!↓1
z , ωz = ωx and

”z = ”x + #x!x#↑
x ↓ #x!x!↓1

z !x#↑
x. Hence, qz = qx, i.e. the dimension does not increase when a

normal distribution is added to a CSN distribution.

Property 5 (Conditioning).

Let X → CSNp,q(µ, !, #, ω, ”) be partitioned into X1 of length p1 and X2 of length p2, such that

X = (X ↑
1, X

↑
2)↑. The parameters are partitioned accordingly,

µ =




µ1

µ2



 , ! =




!11 !12

!21 !22



 , # =
(

#1 #2


.
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Then

X1|2 = (X1|X2 = x2) → CSNp1,q(µ1|2, !1|2, #1|2, ω1|2, ”1|2)

with µ1|2 = µ1 + !12!↓1
22 (x2 ↓ µ2), !1|2 = !11 ↓ !12!↓1

22 !21, #1|2 = #1, ω1|2 = ω ↓ (#2 +

#1!12!↓1
22 )(x2 ↓ µ2), and ”1|2 = ”.

This property establishes that conditioning some elements of a CSN random vector on its other

elements in turn yields a CSN-distributed random variable.

To sum up, the CSN distribution has very attractive theoretical properties; however, its prac-

tical applicability is limited to cases where the skewness dimension q is small or moderate (say,

q < 25). If q is large one has to evaluate the cdf of a high-dimensional multivariate normal dis-

tribution which is computationally very demanding.4 For example, in the filtering algorithm (to

be presented in the next section) the skewness dimension q naturally grows in each period of the

observation window. This implies that the expressions cannot be numerically evaluated after a

couple of periods since they involve multivariate normal distributions with possibly hundreds of

dimensions. We will suggest a new approximation method to reduce the skewness dimension q

in Section 4, but first we outline the Kalman filtering and smoothing steps based on the CSN

distribution.

3. Skewed Kalman filter and smoother

Linear state-space models are commonly used to describe physical and dynamical systems in

economics, engineering and statistics. Since many real-world data applications exhibit skewness, we

adapt the canonical linear state-space model by assuming that the innovations ϱt in the transition

equation of the state variables originate from the CSN distribution:

xt = Gxt↓1 + ϱt, ϱt → CSNp,qε (µω, !ω, #ω, ωω, ”ω), (3)

yt = Fxt + ςt, ςt → N(µε, !ε), (4)

where xt is the vector of (unobserved) state variables and yt the vector of observed variables at

equally spaced time points t = 1, . . . , T . The vector of observation errors ςt is assumed to be

4MATLAB R2024b’s mvncdf function requires that the number of dimensions must be less than or equal to 25.
We rely instead on the Mendell & Elston (1974) method to evaluate the log cdf function which is quite fast and
accurate, but also su!ers from the curse of increasing skewness dimension.
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normally distributed and independent of the CSN-distributed state variable shocks ϱt. Moreover,

we focus on a stable dynamic system, i.e. the characteristic roots of the parameter matrix G are

inside the unit circle. In addition, we assume that the initial state x0 (or its distribution) is known.

These assumptions allow us to focus on the increasing dimensions problem in the Kalman recursions

for the state variables. The pruning algorithm developed in Section 4 could be easily extended to

a more general initialization step, time-varying parameters, and even to a scale mixture class of

closed skew-normal distributions as in Kim et al. (2014). Likewise, CSN-distributed measurement

errors can always be included as structural innovations by adding an auxiliary state variable to

equation (3). In fact, this simplified framework is the one that is most commonly used for the

analysis of economic phenomena such as the one we study in Section 6.

We denote the information set at time t by Ft, i.e. it includes all observations up to time t

and is therefore the φ-algebra generated by the observed variables Ft = φ(yt, yt↓1, . . . , y1). The

conditional distribution xs|t of the state variable vector xs given the information set Ft is described

by its CSN parameters which are denoted by µs|t, !s|t, #s|t, ωs|t and ”s|t. Recursive expressions for

these parameters can be derived in closed form. Rezaie & Eidsvik (2014) summarize the recursion

steps which were originally developed—and coined the skewed Kalman filter—by Naveau et al.

(2005). For the sake of completeness, we briefly review the prediction and updating steps and

show the smoothing equations. An online appendix provides the derivation of the smoothing step,

which is novel to the literature on skewed Kalman algorithms.

3.1. Prediction

Assume that xt↓1|t↓1 → CSNp,qt↑1(µt↓1|t↓1, !t↓1|t↓1, #t↓1|t↓1, ωt↓1|t↓1, ”t↓1|t↓1) is given. The

innovations ϱt → CSNp,qε (µω, !ω, #ω, ωω, ”ω) are independent from xt↓1|t↓1. The state transition

equation (3) in conjunction with closure with respect to linear transformations (Properties 1 and 2)

and summation (Property 4) yields the one-step ahead predictive distribution:

xt|t↓1 → CSNp,qt↑1+qε (µt|t↓1, !t|t↓1, #t|t↓1, ωt|t↓1, ”t|t↓1), (5)

where

µt|t↓1 = Gµt↓1|t↓1 + µω, !t|t↓1 = G!t↓1|t↓1G
↑ + !ω, (6)
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#t|t↓1 =




#t↓1|t↓1!t↓1|t↓1G

↑!↓1
t|t↓1

#ω!ω!↓1
t|t↓1



 , ωt|t↓1 =




ωt↓1|t↓1

ωω



 , ”t|t↓1 =




”11

t|t↓1 ”12
t|t↓1

(”12
t|t↓1)↑ ”22

t|t↓1



 ,

(7)

with ”11
t|t↓1 = ”t↓1|t↓1 + #t↓1|t↓1!t↓1|t↓1#↑

t↓1|t↓1 ↓ #t↓1|t↓1!t↓1|t↓1G
↑!↓1

t|t↓1G!t↓1|t↓1#↑
t↓1|t↓1,

”22
t|t↓1 = ”ω + #ω!ω#↑

ω ↓ #ω!ω!↓1
t|t↓1!ω#↑

ω, and ”12
t|t↓1 = ↓#t↓1|t↓1!t↓1|t↓1G

↑!↓1
t|t↓1!ω#↑

ω.

3.2. Updating

From the prediction step, it is known that xt|t↓1 is CSN distributed. The measurement equa-

tion (4) implies that the conditional distribution of yt given Ft↓1 is also CSN distributed since it is

the sum of a linear transformation of xt|t↓1 and a normal distribution. Due to Property 5 (closure

with respect to conditioning), the updated distribution xt|t (i.e. the distribution of xt given Ft↓1

and also yt, or in short, given Ft) is

xt|t → CSNp,qt(µt|t, !t|t, #t|t, ωt|t, ”t|t), (8)

where qt = qt↓1 + qω and

µt|t = µt|t↓1 + K
Gauss
t↓1 (yt ↓ Fµt|t↓1 ↓ µε),

!t|t = !t|t↓1 ↓ K
Gauss
t↓1 F!t|t↓1, (9)

#t|t = #t|t↓1, (10)

ωt|t = ωt|t↓1 ↓ K
Skewed
t↓1 (yt ↓ Fµt|t↓1 ↓ µε),

”t|t = ”t|t↓1. (11)

The updating step consists of two parts, (i) a Gaussian part which updates µt|t and !t|t using

the Gaussian Kalman gain K
Gauss
t↓1 := !t|t↓1F

↑(F!t|t↓1F
↑ + !ε)↓1 and (ii) a skewed part which

updates the skewness parameters using the skewed Kalman gain K
Skewed
t↓1 := #t|t↓1K

Gauss
t↓1 . In our

setting the only skewness parameter that is updated in the updating step is ωt|t↓1, the parameters

#t|t↓1 and ”t|t↓1 are not a"ected because the measurement errors are Gaussian. Again we see that

# regulates skewness continuously. Without skewness, #t|t↓1 = 0 and K
Skewed
t↓1 = 0, the prediction

and updating steps are equivalent to the ones from the conventional Gaussian Kalman filter. With

13



skewness, however, we see that the skewness dimension qt in (5) and (8) increases in each period,

because two CSN distributed random variables are added.

This means that the skewness dimension explodes as the recursion proceeds over many

time steps. As a result the matrix dimensions grow, parameter estimation gets more

complicated, sampling is harder, and so on. Thus, for practical purposes we need to

assume simplified conditions (Rezaie & Eidsvik, 2014, p. 5).

However, instead of simplifying the conditions or imposing more stringent assumptions on the

state-space system, we suggest an approximation method to shrink the skewness dimension in

Section 4.

3.3. Smoothing

Often, we are not only interested in the filtered distributions (xt|t) but also in the smoothed

distributions (xt|T ), i.e. estimates of the state variables that take into consideration all available

observations y1, . . . , yT . In the last period the filtered and smoothed distributions obviously coin-

cide. The smoothed distributions for t = T ↓ 1, . . . , 1 can be calculated in a backward recursion.

Chiplunkar & Huang (2021) present recursion formulas for a special case involving a non-stationary

(random walk) latent variable. Adapting their approach, we present recursion formulas for the gen-

eral state-space model (3) and (4) with CSN distributed innovations. As far as we know, we are

the first to do so in this general setting. For ease of notation we define the following abbreviations:

Mt = !t+1|T !↓1
t+1|tG!t|t!↓1

t|T ,

Nt = ↓#ωG + #ωMt.

Further, let OT ↓1, OT ↓2, . . . be a sequence of matrices of increasing row dimensions, such that

OT ↓1 = NT ↓1 and, for t = T ↓ 2, T ↓ 3, . . . , 1,

Ot =




Nt

Ot+1Mt



 .

The CSN parameters of xt|FT → CSNp,qT (µt|T , !t|T , #t|T , ωt|T , ”t|T ) for t = T ↓ 1, . . . , 1 are

µt|T = µt|t + !t|tG
↑!↓1

t+1|t(µt+1|T ↓ µt+1|t),
14



!t|T = !t|t + !t|tG
↑!↓1

t+1|t(!t+1|T ↓ !t+1|t)!↓1
t+1|tG!t|t,

#t|T =




#t|t

Ot



 , ωt|T = ωT |T , ”t|T =




”t|t 0

0 ”̃t



 ,

with

”̃t =




”ω 0

0 ”̃t+1



 +




#ω

Ot+1



 (!t+1|T ↓ Mt!t|T M
↑
t)




#ω

Ot+1





↑

for t = T ↓ 2, T ↓ 3, . . . , 1 and ”̃T ↓1 = ”ω + #ω(!t+1|T ↓ Mt!t|T M
↑
t)#↑

ω. The proof is sketched

in the online appendix. Notice that the skewness dimension remains constant (at qT ) during the

backward recursion. In particular, the skewness parameter ωt|T is always equal to ωT |T for all t.

At each iteration, the row dimension of #t|t decreases. This decrease is o"set by an increase in

the row dimension of Ot. In a similar fashion, the top left block of the block-diagonal matrix ”t|T

gets smaller in each iteration, while the bottom right matrix inflates such that the dimension of

”t|T does not change. Similarly to filtering, whether or not smoothing is computationally feasible,

depends largely on the overall skewness dimension. Therefore, implementing reduction methods is

also crucial from a smoothing perspective.

4. Pruning the skewness dimension

Our approach to reduce the skewness dimension is motivated by characterization (1) of the CSN

distribution. Evidently, if there is no correlation between W and Z, the CSN distribution is equal

to a Gaussian distribution and the skewed Kalman filter morphs into the Gaussian one. Therefore

if some elements of Z are only weakly correlated with the elements of W , we can prune, i.e. dispose

of those elements in Z, as there is no palpable e"ect on the skewness behavior. Algorithm 1 outlines

the pseudo-code of our pruning algorithm.

Algorithm 1 (Pruning Algorithm). The algorithm consists of the following steps, given parameters
!, #, ω, ” and a pre-specified pruning threshold tol.

1. Construct and partition the covariance matrix

P =


P1 P
↑
2

P2 P4



=


! ! · #↑

# · ! ” + # · ! · #↑



. (12)
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2. Transform P into a correlation matrix R =


R1 R
↑
2

R2 R4



.

3. Find the maximum absolute value along each row of abs(R2). Save it as vector max_val.

4. Delete the rows of

P2 P4


and columns of


P

↑
2

P4



corresponding to (max_val < tol).

Save as P .
5. Compute pruned ω by removing rows corresponding to (max_val < tol).
6. Compute pruned # = P2!↓1.
7. Compute pruned ” = P4 ↓ # P ↑

2.
8. Return pruned skewness parameters #, ω, and ”.

To illustrate the procedure numerically consider the following univariate example:

xt,t↓1 → CSN



0, 1,




6

0.1



 ,




0

0



 ,




1 ↓0.1

↓0.1 1







 (13)

with a skewness dimension of 2. Applying Pruning Algorithm 1 with a (rather large) pruning

tolerance tol = 0.1, we get:

R =





1.0000 0.9864 0.0995

0.9864 1.0000 0.0981

0.0995 0.0981 1.0000




.

Clearly 0.9864 > tol, but 0.0995 < tol, so we can reduce the skewness dimension by 1. Recomputing

the pruned skewness parameters (ω = 0, # = 6 · 1↓1, ” = 37 ↓ 6 · 6), yields the approximating

distribution CSN(0, 1, 6, 0, 1). Figure 3 depicts the pdf and cdf of the original and the pruned

distributions; the di"erence is hardly discernible despite the large pruning threshold of 0.1.

Of course, the skewness dimension can only be reduced if the correlation coe!cients are su!-

ciently small. We now proceed to show that even though the skewness dimension grows over time,

many of the dimensions will eventually be redundant and can be removed when the density func-

tion (or the log-likelihood function) needs to be numerically evaluated. Assume that the recursion

is anchored at a given initial distribution with parameters µ0|0, !0|0, #0|0, ω0|0, ”0|0. We first focus

on the recursion for the skewness parameter #t|t↓1 in (7) and (10), with !t|t↓1 as given in (6).

Since #t↓1|t↓1 appears in the upper row in the prediction step (7), the number of rows increases at
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Figure 3: Illustration of pruned distribution
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Note: Solid lines correspond to skewness parameters as given in (13) with two skewness dimensions, dashed lines
correspond to the approximating CSN(0, 1, 6, 0, 1) distribution with one skewness dimension.

each step. For instance, in period t = 4 we would obtain

#4|4 =





#0|0!0|0G
↑!↓1

1|0!1|1G
↑!↓1

2|1!2|2G
↑!↓1

3|2!3|3G
↑!↓1

4|3

#ω!ω!↓1
1|0!1|1G

↑!↓1
2|1!2|2G

↑!↓1
3|2!3|3G

↑!↓1
4|3

#ω!ω!↓1
2|1!2|2G

↑!↓1
3|2!3|3G

↑!↓1
4|3

#ω!ω!↓1
3|2!3|3G

↑!↓1
4|3

#ω!ω!↓1
4|3





.

This matrix has dimension (4qω +q0)↑p where p is the number of state variables, qω is the skewness

dimension of the state shocks and q0 is the skewness dimension of the initial distribution. To find

a general expression for any period t, define Lt ⇒ !↓1
t|t↓1!t|tG

↑. Then

#t|t =





#0|0!0|0G
↑ t↓1

j=1 Lj

#ω!ω
t↓1

j=1 Lj

#ω!ω
t↓1

j=2 Lj

...

#ω!ω
t↓1

j=t Lj





!↓1
t|t↓1, (14)

where the empty product in the last row is defined as
t↓1

j=t Lj ⇒ 1. The matrices Lt are closely

related to the updating step: multiplying both sides of !t|t↓1 by G from the left and by !↓1
t|t↓1
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from the right, we obtain the transpose of Lt:

G!t|t!↓1
t|t↓1 = G ↓ G!t|t↓1F

↑(F!t|t↓1F
↑ + !ε)↓1

F.

As t ⇑ ⇓, the sequence G!t|t!↓1
t|t↓1 converges to a constant matrix with all eigenvalues inside

the unit circle (Hamilton, 1994, prop. 13.1 and 13.2). The same is true for Lt as it is just the

transpose of G!t|t!↓1
t|t↓1. This implies that the product terms


j Lj in (14) will fade away as new

rows are appended at the bottom in every period. The rows at the top (i.e. those relating to older

shocks) will fade away more quickly. Hence, the impact of the shocks on the skewness parameter

#t|t (which according to (10) also equals #t|t↓1) is not persistent.

Next, we turn to the skewness parameter ”t|t, which is equal to ”t|t↓1 according to (11). The

recursions in (7) imply that the dimension of ”t|t grows each period. The top left element of the

partitioned matrix (7) shows that the matrix

#t↓1|t↓1!t↓1|t↓1#↑
t↓1|t↓1 ↓ #t↓1|t↓1!t↓1|t↓1G

↑!↓1
t|t↓1G!t↓1|t↓1#↑

t↓1|t↓1

= #t↓1|t↓1!1/2
t↓1|t↓1(I ↓ !1/2

t↓1|t↓1G
↑!↓1

t|t↓1G!1/2
t↓1|t↓1)!1/2

t↓1|t↓1#↑
t↓1|t↓1 (15)

is added to ”t↓1|t↓1 in each iteration. To show that it is positive definite consider the matrix

S ⇒




I !1/2

t↓1|t↓1G
↑

G!1/2
t↓1|t↓1 !t|t↓1



 .

Since both I and !t|t↓1 ↓G!1/2
t↓1|t↓1I

↓1!1/2
t↓1|t↓1G

↑ = !ω (see (6) in the prediction step) are positive

definite, so is S (Horn & Johnson, 2017, theor. 7.7.7). Using Gallier (2011, prop. 16.1) we can

conclude that (I ↓ !1/2
t↓1|t↓1G

↑!↓1
t|t↓1G!1/2

t↓1|t↓1) is also positive definite. Hence, we have shown

the positive definiteness of the matrix (15). As positive definite matrices have strictly positive

diagonal elements, the diagonal elements of ”t|t keep growing over time. Pruning Algorithm 1

reduces the skewness dimension based on the covariances in the bottom left (or top right) partition

of the covariance matrix P in (12), i.e. P2 ⇒ #t|t!t|t. The corresponding correlation of the (i, j)-th

element P
ij
2 is

R
ij
2 = P2

ij


!ii

t|t


”jj

t|t

.
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As we have shown above, each element of the #t|t matrix decreases as t increases. Further, it is

a standard result of the (steady-state) Kalman filter that each element of !t|t converges (rather

quickly) to a constant (Durbin & Koopman, 2012, Sec. 2.11). Therefore, P
ij
2 decreases as t increases.

But, ”jj increases as time passes due to our previous calculations. All these results lead to a

shrinkage of R
ij
2 over time. The same line of thought can also be applied to the parameters of the

prediction step, i.e. to P2 ⇒ #t|t↓1!t|t↓1 and R
ij
2 = P2ij

!ii
t|t↑1


”jj

t|t↑1

. To summarize, the algorithm

is guaranteed to reduce the skewness dimension after su!ciently many periods.

5. A Monte Carlo study

We conduct a thorough Monte Carlo study to evaluate the performance of the pruned skewed

Kalman filter and smoother in terms of accuracy and speed. To this end, we consider both uni-

variate as well as multivariate state-space models as data-generating processes (DGP). The Online

Appendix provides a thorough description of the parameters of the di"erent DGPs and the detailed

outcomes of the Monte Carlo study. In what follows we briefly summarize the key lessons.

Accuracy. We assess how accurate the filter and smoother estimate the value of the underlying

state variables by considering di"erent loss functions and corresponding optimal point estimators;

namely, the expectation, the median and the quantiles of both filtered and smoothed states.5 We

simulate 2400 sample paths for xt and yt of di"erent lengths (40, 80, 110) plus a burn-in phase, where

the shocks ϱt are drawn from the CSN distribution and the measurement errors ςt from the normal

distribution. We compute the expected losses for both the Gaussian as well as pruned skewed

Kalman filter and smoother by averaging over all replications. Three things are worth pointing

out. First, the skewed Kalman filter and smoother are superior to the Gaussian Kalman filter

and smoother in all cases. Even though the better performance is rather small in the univariate

case, it becomes really measurable in the multivariate case. Second, our pruning algorithm is

very accurate and numerically almost equivalent to the non-pruned skewed Kalman filter (up to

the twelfth digit in the univariate case and up to the 5th digit in the multivariate case). Third,

the pruning threshold does not matter measurably in the univariate case and makes only a small

numerical di"erence in multivariate settings.

5Note that in the multivariate case, there is no consensus on multivariate extensions of quantiles (see e.g. Jeong
(2023, footnote 3)), so there we focus only on the quadratic loss function.

19



Speed. We compare the time required to compute 1000 evaluations of the log-likelihood function for

di"erent sample sizes across filters and smoothers. Clearly, the Gaussian Kalman filter is the speed

champion: It is roughly ten times faster than our proposed algorithm, but we are on the order of

milliseconds here. Other approaches to evaluate the likelihood, such as Sequential Monte Carlo, are

typically much slower by a factor of several hundreds or thousands. More importantly, while the

computational time and memory requirement of the non-pruned skewed Kalman filter increases

exponentially and explodes in multivariate models rather quickly, our proposed pruned skewed

Kalman filter does not su"er from this and performs very well in both univariate and multivariate

settings. It is only slightly a"ected by a growing sample size; relatively speaking, it behaves just

as the conventional Kalman filter in this regard. That is, the relative time increase between a

sample size of 50 and 250 is approximately 4 both for the Gaussian as well as our pruned skewed

Kalman filter. Regarding the choice of pruning threshold, the average time needed to compute the

likelihood once is at least twice as fast when using a pruning threshold of 10↓2 compared to 10↓5.

Combined with the accuracy results, we therefore suggest that a threshold of 1% seems to be a

good compromise between accuracy and speed for multivariate models, in univariate models this

can be easily lowered to a very tight pruning threshold of say 10↓5.

Estimation of skewness parameters. We simulate a multivariate DGP with three shocks (one is

left-skewed, one is right-skewed and one is Gaussian) a large number of times and estimate the

underlying shock parameters with maximum likelihood. Overall the estimates using the pruned

skewed Kalman filter are convincingly good for both a very low and a rather large pruning threshold.

Most mass is centered around the true values and the distribution becomes narrower with larger

sample sizes. The PSKF successfully uncovers the skewed distribution of the first two shocks,

but also Gaussianity of the last shock. The Gaussian Kalman filter completely misses the skewed

distribution of ϱt; which is evident in biased and inflated estimates of µω and !ω (which in the

Gaussian case are estimates of E[ϱt] and V [ϱt]).

Overall, we find that the pruned skewed Kalman filter and smoother perform very well in terms

of accuracy, speed and finite sample properties of maximum likelihood estimates of the error term

parameters.
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6. Asymmetric shocks in a New Keynesian DSGE model

The model of Ireland (2004), representative of modern macroeconomic DSGE frameworks,

is prototypical of how macroeconomic shocks—such as preference, cost-push, productivity, and

monetary policy innovations—a"ect the economy in a stylized setting. Such models are usually

estimated using Bayesian methods to circumvent issues like the dilemma of absurd parameters

and pile-up phenomena at the boundary of the theoretically admissible parameter space (An &

Schorfheide, 2007; Andreasen, 2010; Morris, 2017). However, Ireland (2004) is one of the few

studies that successfully applies maximum likelihood to structurally estimate a log-linearized New

Keynesian DSGE model, thereby identifying the primary drivers of aggregate fluctuations in post-

war US data. We adopt the model and data to illustrate the performance of the pruned skewed

Kalman filter and smoother in a real-world context—demonstrating its application under both

maximum likelihood and Bayesian estimation frameworks. This dual approach highlights the

filter’s and smoother’s versatility and ease of implementation across di"erent estimation settings.

6.1. Model equations

The log-linearized model equations are given by:

x̂t = ŷt ↓ ↼ât, (16)
ĝt = ŷt ↓ ŷt↓1 + ẑt, (17)
x̂t = ↽xx̂t↓1 + (1 ↓ ↽x)Etx̂t+1 ↓ (r̂t ↓ Etϖ̂t+1) + (1 ↓ ↼)(1 ↓ ⇀a)ât, (18)
ϖ̂t = ⇁ (↽ϑϖ̂t↓1 + (1 ↓ ↽ϑ)Etϖ̂t+1) + ψx̂t ↓ êt, (19)
r̂t ↓ r̂t↓1 = ⇀ϑϖ̂t + ⇀xx̂t + ⇀g ĝt + ϱr,t, (20)
ât = ⇀aât↓1 + ϱa,t/100, êt = ⇀eêt↓1 + ϱe,t/100, ẑt = ϱz,t/100. (21)

where all hat variables are in log deviations from their non-stochastic steady-state. These equations

are based on the optimal behavior of utility-maximizing households and profit-maximizing firms

within a staggered price setting framework. Specifically, the first equation (16) defines the output

gap, x̂t, which measures the deviation of actual output, ŷt, from its natural level, ↼ât, in the

absence of nominal rigidities. ↼ is a parameter related to the Frisch elasticity of labor and ât is an

autoregressive preference shifter process with persistence parameter ⇀a and subject to preference

shocks ϱa,t. The second equation (17) defines the growth rate ĝt of output subject to productivity

shocks ϱz,t. The third equation (18) describes the New Keynesian IS curve, which relates the output
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gap to the expectations of a future expected output gap, the ex-ante real interest rate—defined

as the di"erence between the nominal interest rate r̂t and expected inflation Etϖ̂t+1—and the

exogenous preference shock. The parameter ↽x allows for some additional flexibility for the lagged

output gap to play a role in determining xt, e.g. due to consumption habit formation. The fourth

equation (19) is a forward-looking New Keynesian Phillips curve, which implies that the output

gap drives the dynamics of inflation relative to expected inflation. The parameter ⇁ is the discount

factor, ψ the slope of the curve (influenced by the strength of nominal rigidities) and ↽ϑ allows for a

backward-looking component, e.g. due to nominal wage rigidities or indexation of prices and wages

to past inflation. The equation is subject to a cost-push process êt which evolves according to an

autoregressive process with parameter ⇀e. A decrease in êt lowers the elasticity of demand for each

intermediate good and hence increases markups of the monopolistically competitive firms; thus, ϱe,t

is a negative cost-push shock. Finally, in equation (20) monetary policy is described by a feedback

rule that determines the change in the nominal interest rate, based on deviations from inflation,

output gap, and output growth from their steady-state targets. ⇀ϑ, ⇀x and ⇀g are the sensitivity

parameters of systematic monetary policy and ϱr,t captures any non-systematic deviation from the

rule. Note that in light of the rather small magnitude of the innovations, we rescale all shocks by

a factor of 100 directly in the model equations, see (21), to ensure numerical stability, particularly

for the Bayesian MCMC sampler.

6.2. State space solution

Under rational expectations, agents know both the exact model equations and the full statistical

distribution of the white noise process ϱt = [ϱa,t, ϱe,t, ϱz,t, ϱr,t]↑ for all t. Hence, the expectation

operator Et is conditional on the information set available in period t, which comprises the state of

the economy up to period t ↓ 1 and the values of current shocks ϱt. Given parameter restrictions

on θ = (⇁, ψ, ↼, ↽x, ↽ϑ, ⇀ϑ, ⇀x, ⇀g, ⇀a, ⇀e) that ensure stable and unique trajectories (Blanchard &

Kahn, 1980), the stochastic solution is characterized by a recursive decision rule (policy function).

For a log-linearized model—equivalent to a first-order perturbation solution—this policy function

takes a linear state-space form analogous to equations (3) and (4):

xt = Gxt↓1 + Rϱt and yt = Fxt + ςt

22



where xt = [x̂t, ŷt, ĝt, ẑt, ϖ̂t, ât, êt, r̂t]↑ collects all endogenous variables and yt = [ĝt, ϖ̂t, r̂t]↑ gathers

the observable ones. While the measurement matrix F consists of zeros and ones, the reduced-form

matrices G and R are nonlinear functions of θ. We compute these matrices for any given θ using

Dynare’s first-order perturbation solution algorithm (Villemot, 2011).

6.3. Data and estimation

We consider the same set of quarterly macroeconomic time series for the 1980Q1–2003:Q1

period as originally used in Ireland (2004): (1) Demeaned quarterly changes in seasonally adjusted

real GDP, converted to per capita values by dividing by the civilian noninstitutional population

aged 16 and over, are used to measure output growth ĝt. (2) Demeaned quarterly changes in the

seasonally adjusted GDP deflator provide the measure of inflation ϖ̂t. (3) Demeaned quarterly

averages of daily values of the three-month U.S. Treasury bill rate provide the measure of the

nominal interest rate r̂t.

Of the ten structural parameters in the model, four are calibrated rather than estimated:

⇁ = 0.99, ψ = 0.1, ↽x = 0, and ↽ϑ = 0.6 Hence, our interest centers around the other six model

parameters plus the parameters of the distribution of ϱt. Rather than assuming the conventional

multivariate normality for the shocks ϱt, we assume each shock follows an independent univariate

skew-normal distribution, ϱj,t → CSN(µωj , !ωj , #ωj , 0, 1) for j ↗ {a, e, z, r}, where µωj is automat-

ically determined to ensure E[ϱj ] = 0 for any given !ωj and #ωj . Moreover, independence allows

us to make use of closed-form univariate formulas for the standard error and skewness coe!cients,

therefore enabling one to directly estimate stderr(ϱj,t) and skew(ϱj,t) in place of !ωj and #ωj .

We di"erentiate between two model variants. In the Gaussian variant, we set #ωj = 0 for

all j, foregoing the estimation of skew(ϱj,t), while in the CSN variant we estimate all skew(ϱj,t)

parameters. For estimation, we consider two frameworks: (i) Minimizing the negative log-likelihood

function and (ii) using a Random Walk Metropolis Hastings (RWMH) approach to draw from

6The parameters ε and ϑ were originally fixed by Ireland (2004) due to lack of identification, while estimates for
ϖx and ϖϑ typically converge to values indistinguishable from zero, suggesting that backward-looking behavior of
consumers and firms is not important in both the New Keynesian IS and Phillips curve. To avoid boundary pile-up,
multi-modality, and other numerical complications, we set ϖx and ϖϑ to zero in our baseline estimations. We also
estimated versions where these parameters are free; in those cases, we apply a logit transformation to place them
on an unbounded domain and—following Ireland (2004)—use one-sided finite di!erences of the inverse Hessian to
compute maximum likelihood standard errors. Bayesian posterior mode finding becomes somewhat more challenging
and heavily time-intensive in that setup due to multi-modality. But as the log-likelihood and log-posterior at the
mode are actually even lower with free ϖx and ϖϑ, we decide to fix these parameters in the baseline.
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Table 1: Bounds and priors for model and shock parameters

BOUNDS PRIOR

Parameter Lower Upper Type Mean Std-dev

ϱ 0 1 Beta 0.20 0.10
ςϑ 0 1 Gamma 0.30 0.10
ςg 0 1 Gamma 0.30 0.10
ςx 0 1 Gamma 0.25 0.0625
ςa 0 1 Beta 0.85 0.10
ςe 0 1 Beta 0.85 0.10
stderr(φa) 0 10 InvGamma

↑
30

↑
30

stderr(φe) 0 10 InvGamma
↑

0.08
↑

1
stderr(φz) 0 10 InvGamma

↑
5

↑
15

stderr(φr) 0 10 InvGamma
↑

0.50
↑

2
skew(φa) →0.995 0.995 GenBeta 0 0.40
skew(φe) →0.995 0.995 GenBeta 0 0.40
skew(φz) →0.995 0.995 GenBeta 0 0.40
skew(φr) →0.995 0.995 GenBeta 0 0.40

Note: GenBeta is a Beta distribution with support on [-1,1].

the posterior distribution of the parameters. In all cases, the PSKF computes the log-likelihood

function, using consistent numerical routines across model variants and frameworks. Table 1 lists

the bounds used during optimization and summarizes the prior distributions employed during

Bayesian estimation, which are taken from Table 2 of Chib & Ramamurthy (2014). For the

skewness coe!cients, we impose a generalized Beta distribution with shifted support from [0,1] to

[-1,1], a mean of 0 (indicating Gaussianity) and standard deviation of 0.4. Our conclusions do not

depend on this chosen type of prior and remain robust even when a uniform or truncated normal

distribution is used instead (with a similar mean and appropriate support).

6.4. Computational remarks

First, based on our Monte Carlo evidence, we prune skewness dimensions below a 1% threshold.

Second, pre-multiplying ϱt by R in the state transition equation is without loss of generality due to

Property 2; thus, we work with the linearly transformed distribution Rϱt. Third, as the matrix G is

typically singular in DSGE models, numerical issues can arise during prediction. To mitigate this,

we compute, filter, and smooth the parameters of the joint distribution of [x↑
t, ϱ

↑
t]↑ rather than those

of xt alone (Guljanov, 2024). Fourth, the initial distribution for the prediction-error decomposition

of the likelihood is set to a normal distribution with mean zero and initial forecast-error covariance

equal to the unconditional variance of the state variables (solution to the Lyapunov equation).

Fifth, we penalize the likelihood (and posterior) function in several scenarios, such as when the
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Blanchard & Kahn (1980) conditions are violated (i.e. a DSGE specific generalization of Eigenvalues

of G being outside the unit circle), the covariance matrix of ϱt is not positive semi-definite, or the

skewness parameters exceed theoretical limits. Sixth, to find the mode of the likelihood, we use a

sophisticated search for initial parameter values—a critical step in any (Gaussian or non-Gaussian)

maximum likelihood estimation. We start with values from Ireland (2004) for model and standard

error parameters, then construct an evenly spaced grid of skewness parameters for all four shocks.

For each value on the grid, we compute the log-likelihood, while holding model parameters and

standard errors of shocks fixed at their Gaussian estimates. By evaluating over 50,000 combinations

(spanning various skewness scenarios between the shocks), we identify the best five parameter sets.

These serve as starting points for further numerical optimization of both standard errors and

skewness parameters, with model parameters held fixed. The resulting shock parameter estimates

are merged with the Gaussian model parameter estimates to form our final initial values for the

actual estimation. Equipped with these, we minimize the negative log-likelihood function over all

parameters. For Bayesian estimation, a similar approach finds the posterior mode, though the

Hessian at the mode can be non-positive definite.7 To address this, we propose two solutions:

(i) Run a Monte Carlo-based optimization routine to locate a high-density region for initializing

the Metropolis-Hastings algorithm and to estimate the posterior covariance matrix. This method

is, however, very time-consuming. Alternatively, (ii) use a (short) Slice sampler to estimate the

mode and posterior covariance matrix directly, as it requires no fine-tuning and is very robust in

terms of dealing with multi-modality and high-dimensional parameter spaces. Specifically, we run

multiple short Slice sampler chains in parallel (e.g., 8 chains with 250 draws each or less), then

use the combined draws to determine the mode and covariance matrix of the posterior distribution

which then serves for the initialization of the RWMH algorithm. Our code demonstrates that

both approaches yield very similar initialization matrices; therefore, we strongly recommend the

7The Metropolis-Hastings algorithm does not require starting exactly at the posterior mode; it only needs a
starting point with high posterior density and an estimate of the proposal distribution’s covariance matrix. Starting
at the the mode is, however, beneficial for the acceptance rate and convergence speed and has become standard
practice in the Bayesian estimation of DSGE models literature. Likewise, standard practice is to present Bayesian
results using the RWMH algorithm, however, we would like to mention that the posterior distribution obtained
by RWMH with 2,000,000 draws closely matches the one obtained via a Slice sampler with 40,000 draws. This
is noteworthy, because the Slice sampler typically yields Markov chains with lower autocorrelation than RWMH
(so less draws required, albeit each draw requires more function evaluations), but more importantly, it avoids both
the time-consuming and often frustrating mode-finding step as well as additional fine-tuning to achieve a specific
acceptance rate. Results are accessible in the replication package.
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Table 2: Parameter estimates

MAXIMUM LIKELIHOOD BAYESIAN RWMH

Gaussian CSN Gaussian CSN

Parameter Mode Std-dev Mode Std-dev Mean Mode 90%-HPD Mean Mode 90%-HPD

ϱ 0.0581 0.0685 0.1596 0.0029 0.1282 0.1231 [0.05;0.21] 0.1392 0.1377 [ 0.05; 0.22]
ςϑ 0.3865 0.2099 0.2810 0.0048 0.5001 0.4938 [0.35;0.66] 0.4662 0.4522 [ 0.31; 0.62]
ςg 0.3960 0.0612 0.3385 0.0058 0.3627 0.3495 [0.28;0.44] 0.3586 0.3445 [ 0.28; 0.43]
ςx 0.1654 0.0976 0.2871 0.0080 0.2050 0.1813 [0.12;0.29] 0.2227 0.2006 [ 0.14; 0.30]
ςa 0.9048 0.0579 0.9139 0.0082 0.9129 0.9189 [0.87;0.96] 0.9216 0.9336 [ 0.88; 0.97]
ςe 0.9907 0.0130 0.9805 0.0107 0.9107 0.9241 [0.85;0.97] 0.9030 0.9153 [ 0.85; 0.96]
stderr(φa) 3.0167 1.5568 2.4337 0.0434 3.2584 3.1659 [1.91;4.56] 3.2359 3.2442 [ 1.84; 4.59]
stderr(φe) 0.0248 0.0180 0.0206 0.0021 0.0602 0.0572 [0.05;0.07] 0.0603 0.0573 [ 0.05; 0.07]
stderr(φz) 0.8865 0.1245 0.7913 0.0142 0.7887 0.7648 [0.61;0.96] 0.7975 0.7546 [ 0.62; 0.97]
stderr(φr) 0.2790 0.0374 0.2853 0.0081 0.2953 0.2796 [0.24;0.35] 0.2920 0.2775 [ 0.24; 0.34]
skew(φa) — — -0.1924 0.0033 — — — -0.0819 -0.1925 [-0.46; 0.33]
skew(φe) — — -0.2174 0.0039 — — — -0.3584 -0.4014 [-0.73;-0.01]
skew(φz) — — -0.9950 0.0712 — — — -0.3808 -0.5166 [-0.89; 0.15]
skew(φr) — — 0.8171 0.0140 — — — 0.5183 0.6066 [ 0.23; 0.82]

Obj (mode) 1,207.56 1,215.85 1,205.11 1,211.47

Note: Obj (mode) is value of the log-likelihood or log-posterior at the estimated mode.

Slice sampler method for it is faster and more general applicable—not just for the PSKF but for

Bayesian estimation in general. Subsequently, we generate 2,000,000 draws across 8 parallel chains

with the RWMH algorithm, allocating half of the samples for burn-in, and fine-tuning the proposal

distribution to achieve an acceptance rate of around 30% for each chain. Table 2 presents the final

estimation outcomes under both the maximum likelihood and Bayesian estimation frameworks.

All estimations are performed with Dynare 7.0 and MATLAB R2024b on an Apple MacBook Pro

equipped with an M2 Max chip and 64 GB RAM.

6.5. Estimation results

From the maximum likelihood estimation, the data clearly favors the CSN distribution over the

Gaussian model, as evidenced by a higher maximized log-likelihood value. Given that Gaussianity

is nested within the PSKF, a likelihood ratio test substantiates this by yielding a test statistic of

16.58 with a p-value of 0.0023.

Examining the model parameters, we observe di"erences in the maximum likelihood estimates

of the policy parameters ⇀ϑ, ⇀g, and ⇀x. When allowing for skewed monetary policy shocks, these

di"erences suggest that the Federal Reserve’s systematic policy is more responsive to movements in

the output gap than to output growth. Furthermore, the rule-based inflation sensitivity parameter
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is estimated to be lower than in the Gaussian model, although still within the confidence interval.

While the maximum likelihood estimates for the persistence of the preference shifter, ⇀a, and

the cost-push shock, ⇀e are very similar across model variants, the estimate of ↼ is considerably

higher in the CSN model than in the Gaussian model. This finding has two implications. First,

in the theoretical framework, a higher ↼ implies a more elastic labor supply schedule. Second,

empirically, the preference shock appears to have a larger impact on the e!cient level of output.

We do not observe any meaningful di"erences in the estimated posterior distributions of the model

parameters across model variants, suggesting that the chosen priors exerted a substantial influence

on the Bayesian estimation. Comparing the Bayesian mode estimates to the maximum likelihood

estimates reveals that the Bayesian approach more closely aligns with the CSN-based results.

Turning to the shock parameters, the estimated standard errors for the cost-push and monetary

policy shocks are nearly identical, while the Gaussian filter tends to overestimate those of the

preference and productivity shocks. Notably, all shocks exhibit statistically significant skewness

coe!cients in the maximum likelihood estimation, with particularly pronounced skewness for the

productivity and monetary policy shocks—the productivity shock even reaching the theoretical

bound of 0.995.

Figure 4 illustrates these di"erences by comparing the estimated probability density functions

based on the maximum likelihood values. The CSN distribution (solid line) for the monetary policy

shock has a thinner left tail and a heavier right tail compared to a normal distribution with the

same standard deviation (dashed line). Combined with the estimated evidence of a less systematic

monetary policy response, this suggests that large, unexpected monetary tightening events are

more likely than equally large easing events. This observation aligns with the Federal Reserve’s

unanticipated hawkish policies during Paul Volcker’s tenure as chairman.

Similarly, the productivity shock distribution features a heavier left tail and lighter right tail

relative to a normal distribution with the same standard deviation. This pattern is consistent

with historical episodes of rare, but large negative productivity shocks in the U.S. between 1980

and 2004—such as sharp oil price increases in the early 1980s and 1990, and the dot-com bust

of 2000–2001, particularly when compounded by external disruptions like the Gulf War (Federle

et al., 2024). The substantial skewness coe!cient for productivity also echoes the findings of Ruge-

Murcia (2017). In contrast, the preference and (negative) cost-push shocks are estimated to exhibit
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Figure 4: Estimated probability density functions of shocks
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Note: Solid lines represent the estimated CSN distributions, while dashed lines denote the estimated Gaussian
distributions based on the maximum likelihood estimates presented in Table 2.

only low levels of negative skewness.

Because our Bayesian prior is centered on zero skewness (i.e. Gaussianity), the posterior esti-

mates exhibit less pronounced skewness than the maximum likelihood estimates, while still follow-

ing the same pattern in relative magnitude and direction. However, given the historical context

and related studies, it would be reasonable to adjust the prior accordingly.

6.6. Impulse responses

We explore the di"erences between model variants by analyzing the e"ects of a one-time mone-

tary policy shock on the model variables, as shown in Figure 5. Solid lines represent the maximum

likelihood estimates from the CSN column in Table 2, while dashed lines correspond to the Gaus-

sian column. In the presence of asymmetry, it is crucial to distinguish between positive and

negative shocks. Following standard practice—as e.g. in Ruge-Murcia (2017)—we define the 16th

percentiles of the estimated distributions as typical negative shocks (light gray lines) and the 84th
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Figure 5: Impulse response functions to a monetary policy shock
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Note: The solid lines represent responses from maximum likelihood estimates of the CSN model, while the dashed
lines show responses from the Gaussian model with same model parameters and standard errors of shocks. The light
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percentiles as typical positive shocks (dark gray lines). The responses to a typical monetary tight-

ening shock are more pronounced than those to a typical easing shock, with the output gap and

inflation decreasing more sharply and the interest rate rising more steeply. Since the systematic

parameters are estimated slightly di"erently, the dynamics of the impulse-response function are

slightly di"erent as well. It is important to emphasize that with non-Gaussian shocks, even in

a linear model, the size and direction of shocks are significant for conducting monetary policy,

as the transmission channels of typical monetary easing versus monetary tightening shocks are

asymmetric.

6.7. Economic implications

Our primary contribution is methodological; therefore, the estimated model is deliberately

stylized and primarily intended for illustrative purposes. Even so, the estimates yield valuable

insights into the nature of business cycles and the role of monetary policy.

The right-skewed monetary policy shocks imply that large, unexpected tightening episodes—

such as sharp increases in the policy rate—are more likely than equally large easing episodes. From
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Table 3: Statistics on recessions in the model

All Severe Mild
Gaussian CSN Gaussian CSN Gaussian CSN

Number recessions (ĝt ↓ →0.5%) 42564 39536 14188 13179 14188 13179
Frequency recessions (in %) 8.51 7.91 2.84 2.64 2.84 2.64
Mean duration (peak to trough, quarters) 3.13 3.07 4.44 4.29 2.23 2.23
Mean output loss (peak to trough, in %) -2.29 -2.41 -3.68 -3.93 -1.18 -1.21

Note: Statistics are based on a 500,000 time period simulation of model with either Gaussian or CSN distributed
shocks. Calibration is based on column CSN in Table 2. Model and stderr parameters are the same in both model
variants, Gaussian shocks have skewness coe"cients set to zero. A severe (mild) recession is a recession associated
with a peak-to-trough output loss in the top (bottom) three deciles of the distribution.

a policy perspective, this suggests that unexpected central bank interventions tend to exhibit an

asymmetry in response, which can amplify downside risks and make recessions deeper if they

coincide with contractionary shocks in other sectors. In historical terms, this is consistent with

episodes like the early 1980s Volcker shock, where unanticipated, rapid policy tightening occurred

in response to high inflation.

Meanwhile, the left-skewed productivity shocks indicate a greater likelihood of large adverse

technology or supply-side disturbances than large positive ones. This asymmetry can help explain

why certain recessionary episodes (e.g., those triggered by oil price spikes or abrupt technological

disruptions like the dot-com bust or wars) can be more severe than expansions. From a broader

perspective on the business cycle, such skewness implies that while expansions tend to unfold

gradually, recessions may be sharper and more abrupt.

To illustrate this, we follow Boissay et al. (2016) and simulate two 500,000-period time series

of the model, one with Gaussian and the other one with CSN distributed shocks. The model is

calibrated using the CSN-based maximum likelihood estimates from Table 2. In the Gaussian

variant, we set the skewness coe!cients of the shocks to zero, but keep the model parameters

and standard errors of shocks at their CSN estimates. We define a recession as a period where

output growth ĝt falls below -0.5% per quarter and stays negative for at least two quarters. Severe

and mild recessions are determined by the top and bottom deciles of the implied distribution of

peak-to-trough output losses. As Table 3 shows, the skew-normal (CSN) model yields slightly

fewer total recessions (7.91% vs. 8.51%), which are also a bit shorter on average (3.07 vs. 3.13

quarters). However, their mean output loss is higher (-2.41% vs. -2.29%), driven mainly by deeper

severe recessions (-3.93% vs. -3.68%). These patterns align with the model’s assumptions. The

30



strong left-skewed productivity shock (and to some extent the right-skewed monetary policy shock)

occasionally trigger sharper downturns, while the right-skewed monetary policy shock delivers

a higher likelihood of easing surprises, preventing or shortening some recessions and ultimately

resulting in slightly fewer but somewhat deeper recessions overall. Mild recessions behave almost

the same in both models, reflecting that smaller negative shocks are common in both distributions

and don’t trigger outsized policy responses or large output drops.8

Taken together, these findings o"er fresh insights into the dynamics of cyclical fluctuations,

productivity and monetary policy. They highlight the importance of modeling the asymmetric

nature of shocks rather than defaulting to symmetrical, Gaussian assumptions. Policymakers can

use this perspective to better evaluate the risks posed by abrupt tightening or severe negative

supply shocks. The observed skewness patterns suggest that central banks and regulators should

design policies robust to asymmetric risks. For example, in light of the elevated probability of

sharp monetary tightening, financial regulators might consider counter-cyclical bu"ers or stress

tests that account for such scenarios. Similarly, fiscal and monetary interventions could be tailored

to mitigate the impact of rare but severe productivity downturns (Galí, 2020).

7. Conclusion

The skewed Kalman filter is an analytical recursive method for inferring the state vector in linear

state-space systems and can be used to compute the exact likelihood function when innovations

originate from the CSN distribution. Intriguingly, the skewed Kalman filter encompasses both

Gaussianity and the skew-normal distribution as special cases. Applying this filter to data demands

substantial computational resources or is even unfeasible for multivariate models or large sample

sizes because it involves the evaluations of high-dimensional multivariate normal cdfs of growing

dimensions. We introduce a fast and intuitive pruning algorithm for the filter’s updating step,

overcoming this curse of increasing skewness dimensions. We provide theoretical evidence for its

8We acknowledge that the di!erences we find are inherently smaller than those in Boissay et al. (2016). Their
study employs a richer, fully nonlinear model with more frictions—particularly mechanisms for banking busts—
while our approach is deliberately stylized and fully linear. They also calibrate towards annual data, whereas our
model is quarterly, and we have much lower estimated standard errors (scaled by 1/100). Thus, it is unsurprising
that our simpler setup yields more modest di!erences compared to their large e!ects. Nevertheless, our primary
objective is methodological. Even in this pared-down framework, we do observe notable distinctions between a
Gaussian version and one featuring skew-normal shocks. Incorporating these shock asymmetries into models with,
for instance, financial frictions or larger shocks should generate more pronounced dynamics.
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validity across any dataset and parameter values. Our pruned skewed Kalman filter and smoother

operate e"ectively and e!ciently in practice, as demonstrated in our comprehensive Monte Carlo

study and a multivariate real data applications. In related work, we already demonstrate the

scalability and applicability of the PSKF to high-dimensional state-space models, namely the Smets

& Wouters (2007) model with about 30 state variables, embedded in a standard Bayesian MCMC

estimation framework (Guljanov, 2024). Furthermore, the extension of the pruned skewed Kalman

filter to the pruned skewed Student’s-t filter is an area for future research as there is evidence that

both skewness as well as heavy tails in the innovations are important drivers of business cycle

models. The pruning algorithm can be applied in a similar manner to achieve this extension.

Lastly, the evidence of skewness in key macroeconomic shocks opens promising avenues for

further research. It challenges the standard framework that assumes symmetric shocks and prompts

investigation into the sources of asymmetry—whether market frictions, policy errors, or structural

factors. This could lead to refined theoretical models that better capture how shocks are distributed

and how they propagate through the economy. Importantly, these models can still operate within

a linear setting, provided they account for non-normal shock distributions. Once skewness is

identified, it becomes possible to explore how asymmetric shocks interact with financial frictions

or nonlinear policy rules, potentially yielding richer explanations of macroeconomic volatility and

more robust policy responses.
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