
Baseline New-Keynesian Model
Zero-Lower-Bound (Short version)



Motivation

Occasionally binding constraints are all over the place in Macro

Most prominent: Zero-Lower-Bound on nominal interest rates

What does this imply for welfare and optimal monetary policy?

Framework: Baseline New Keynesian model with divine coincidence



Divine Coincidence



New Keynesian Model with Divine Coincidence

Abstract from real imperfections and consider canonical representation:

New-Keynesian Phillips curve:          

New-Keynesian dynamic IS curve:   

Interest rate rule:                                   
 
Optimal allocation:  and  and 

No policy trade-off between output and inflation stabilization 
 "Divine Coincidence": Achieving  implies  and  
 Taylor principle ( ) always ensures stable and unique solution
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Zero-Lower-Bound



Zero-Lower-Bound

Natural rate of interest: 

Decline of  (negative natural rate shock) due to a

• positive productivity shock on  

• negative demand shock on  

Drop in  may induce zero-lower-bound as )
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Zero-Lower-Bound

Assume following path for 

What is the optimal response under discretion vs commitment that 
minimizes the loss function 
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Optimal Monetary Policy



Discretion

Combine  and  to get:  

Mixed complementary problem

•  must hold whenever 

• alternatively: complementary slackness condition 
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Commitment

First-order condition wrt : 

First-order condition wrt : 

Mixed complementary problem:

•  must hold whenever 

• alternatively: complementary slackness condition 
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Dynare Implementation



Occasionally binding constraints in Dynare

Models with OBC may be simulated

• under perfect foresight using max/min operators or (better) lmmcp

• in a stochastic framework using toolboxes like occbin

Difficulties

• existence and uniqueness of solution

• algorithms with reliable accuracy AND sufficient speed



Occasionally binding constraints in Dynare

max/min operators can be used with deterministic simulations, but yield 
singular Jacobians (in stochastic frameworks max/min are ignored)

Levenberg-Marquardt mixed complementarity problem

• slackness condition described by equation tag mcp 

• MCP solver triggered with perfect_foresight_solver(lmmcp) 

occbin for linearized stochastic models is coming in Dynare 4.7



Summary



Summary

Zero-lower-bound may constrain monetary policy

Adverse dynamics if monetary policy lacks ability to commit

Natural rate low/negative for a variety of reasons


