Simulations

Deterministic vs Stochastic Model

- Dynare's general model frameworks
 - deterministic model framework:
 - stochastic model framework: decision rule/policy function:
- Dynare computes the solution of
 - deterministic models to arbitrary precision

$$f(y_{t-1}, y_t, y_{t+1}, u_t | \theta) = 0$$

$$E_t f(y_{t-1}, y_t, y_{t+1}, u_t | \theta) = 0, \qquad u_{t+1} = \sigma \varepsilon_{t+1}$$

$$y_t = g(y_{t-1}, u_t, \sigma | \theta), \qquad \varepsilon_t \sim N(0, \Sigma)$$

• stochastic models based on perturbation approximation of policy function

When to use which framework?

Deterministic simulation

- perfect foresight assumption
- shocks, transition to new equilibrium
- Stochastic Simulation
 - 1st order: certainty equivalence: today's decisions don't depend on future uncertainty
 - nonlinear relationships are taken into account
 - Perturbation only valid in the vicinity of the steady-state, can be totally wrong otherwise

• useful to study: full implications of non-linearities, reaction to both contemporaneous and anticipated

• higher-order: motive for precautionary savings or risk premia, as future uncertainty (future shocks) and

• useful to study: transmission mechanisms of stochastic shocks, importance of shocks, estimation

Deterministic Simulation in Dynare

- initval: for the initial steady state (followed by steady)
- endval: for the terminal steady state (followed by steady)
- histval: for initial or terminal conditions out of steady state
- shocks: for shocks along the simulation path
- perfect_foresight_setup: prepare the simulation
- perfect_foresight_solver: compute the simulation
- simul: old syntax, alias for perfect_foresight_setup + perfect_foresight_solver

Deterministic Simulation in Dynare

Paths of exogenous and endogenous variables are stored in:

• *oo*_.*endo_simul* = $(y_0 \ y_1 \ \dots \ y_T \ y_{T+1})$

• $oo_.exo_simul = (u_1 \dots u_T)'$

• y_0, y_{T+1} and u_1, \ldots, u_T are the constraints of the problem

• y_1, \ldots, y_T are the initial guess for the Newton algorithm

Perfect_foresight_solver replaces y_1, \ldots, y_T in o_0 _.endo_simul by the solution

Initial guess for Newton algorithm can be manipulated after perfect_foresight_setup, but before perfect_foresight_solver

- Perfect_foresight_setup initializes those matrices, given the shocks, initval, endval and histval blocks

Stochastic Simulation in Dynare

shocks: declare (co-)variance of Gaussian distribution

stoch simul(order=1, irf=30, periods=0) y c iv;

stoch simul(order=3, irf=0, periods=300); approximate policy function at third order, compute a simulation for 300 periods, empirical moments and variance decomposition, print/plot all variables

- approximate policy function at first order, compute impulse-response-function, theoretical moments and variance decomposition, print/plot only for y, c, iv