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Introduction



Introduction

• Bayesian (and to some extent also Frequentist) estimation of DSGE models has
rapidly progressed

• Study of identifiability of parameters, which should precede estimation (think
about regularity conditions), is still a rather neglected topic in applied macro

• BUT: Parameter identification is a model property and can be readily assessed on
a case-by-case basis before taking your model to data

• This talk:
• Present well-established diagnostics and indicators to detect identification failures
• Showcase the identification toolbox in Dynare
• Provide applied tips on how to solve theoretical identification failures and improve the
strength of DSGE model parameter identification
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Introduction

Example (1): Likelihood shape



The likelihood function shows a clear peak in ρ and σwt .
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The likelihood function has no unique maximum in σε and φ, only a range of maxima
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Introduction

Example (2): ARMA(1,1)



ARMA(1,1)

xt − φ1xt−1 = εt − φ2εt−1, with εt
iid∼ N(0, σ2)
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Figure 1: (φ1, φ2, σ) = (0.4, 0.4, 1) [see arma.mod]
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Autocovariance function

• Define γj = E[xtxt−j], then for ARMA(1,1):

γ0 =
(1+ φ22 − 2φ1φ2)σ2

1− φ21
, γ1 =

(φ1 − φ2)(1− φ1φ2)σ
2

1− φ21
, γh = φ1γh−1

• White noise: (φ1 = φ2 = 0):

γ0 = σ2, γh = 0

• Equal coefficients (φ1 = φ2):

γ0 = σ2, γh = 0

• Observational equivalent processes: θ1 and θ2 are not jointly identifiable
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Introduction

Example (3): Forward-looking Model



Simple forward-looking model

rt = ψπt + εMt (TR)

xt = Etxt+1 −
1
τ
(rt − Etπt+1) + εDt (IS)

πt = βEtπt+1 + κxt + εSt (PC)

or  1 0 −ψ
1
τ

1 0
0 −κ 1


︸ ︷︷ ︸

A0

 rt
xt
πt


︸ ︷︷ ︸

yt

=

0 0 0
0 1 1

τ

0 0 β


︸ ︷︷ ︸

A1

Etrt+1
Etxt+1
Etπt+1


︸ ︷︷ ︸

Etyt+1

+

εMtεDt
εSt


︸ ︷︷ ︸
εt

Stationary solution implies Eigenvalues of A−1
0 A1 lie within unit circle:

yt = A−1
0 A1Etyt+1 + A−1

0 εt =
∞∑
j=0

(A−1
0 A1)jA−1

0 Etεt+j = A−1
0 εt

[see forward_looking.mod]
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Simple forward-looking model
Solution/data-generating-process/reduced-form rt

xt
πt

 =
1

κψ
τ

+ 1

 1 κψ ψ

− 1
τ

1 −ψ
τ

−κ
τ

κ 1


︸ ︷︷ ︸

A−1
0

εMtεDt
εSt



Some insights

• Some parameters (β) do not enter solution; thus, do not enter the likelihood (or
any other objective)

• Identification depends on observables, e.g. when observing only xt

• τ and ψ are pairwise collinear
• κ and ψ are pairwise collinear
• We would need to fix ψ

• κ is already the product of several other structural parameters (Calvo or
Rotemberg)

• Restrictions necessary to ensure regularity (Eigenvalues inside unit circle) imply
bounds involving all parameters, i.e. parameter space is not variation free
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Introduction

Example (4): Investment Adjustment
Costs



Kim (2003): RBC model with two types of investment adjustment costs

Log utility, no labor, Cobb-Douglas production function, AR(1) technology

Ut = ln (Ct)

Yt = AtKαt−1

ln (At) = ρA ln (At−1) + εAt

Aggregate demand with multisectoral adjustment costs governed by θ

Ydt =

[
(1− SAV)

(
Ct

1− SAV

)1+θ
+ SAV

(
It
SAV

)1+θ
] 1
1+θ

,with SAV =
Ī
Ȳd

Capital accumulation with intertemporal adjustment costs governed by κ

Kt =
[
(1− δ)Kt−1

1−κ + δ

(
It
δ

)1−κ
] 1
1−κ

[see investadjust.mod]
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Baseline parametrization: θ = 1.5 and κ = 2

THEORETICAL MOMENTS
VARIABLE MEAN STD. DEV. VARIANCE
y 2.6827 1.8723 3.5054
yd 2.6827 1.8723 3.5054
c 2.0120 1.5077 2.2731
iv 0.6707 0.3649 0.1332
rk 0.0300 0.0207 0.0004
k 26.8270 3.5612 12.6824
lam 0.4970 0.4108 0.1688
q 1.0000 0.8094 0.6551
a 1.0000 0.6928 0.4800
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No multisectoral costs: θ = 0 and κ = 1.4

THEORETICAL MOMENTS
VARIABLE MEAN STD. DEV. VARIANCE
y 2.6827 1.8723 3.5054
yd 2.6827 1.8723 3.5054
c 2.0120 1.5077 2.2731
iv 0.6707 0.3649 0.1332
rk 0.0300 0.0207 0.0004
k 26.8270 3.5612 12.6824
lam 0.4970 0.3724 0.1387
q 1.0000 0.7295 0.5322
a 1.0000 0.6928 0.4800
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No intertemporal costs: θ = −3.5 and κ = 0

THEORETICAL MOMENTS
VARIABLE MEAN STD. DEV. VARIANCE
y 2.6827 1.8723 3.5054
yd 2.6827 1.8723 3.5054
c 2.0120 1.5077 2.2731
iv 0.6707 0.3649 0.1332
rk 0.0300 0.0207 0.0004
k 26.8270 3.5612 12.6824
lam 0.4970 0.2832 0.0802
q 1.0000 0.5448 0.2968
a 1.0000 0.6928 0.4800
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Insights

• At first-order, DSGE solution is linear Gaussian state-space system
• First two moments characterize whole distribution (moments, impulse responses,
variance decomposition, etc)

• Different parameters yield same theoretical moments for y, c, iv, rk and a; and
therefore also observational equivalent models

• Even with an infinite sample size, no way to uniquely recover true model structure

• Observing lam or q might work, but unrealistic
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Identification problem

Theory and Practice



Identification Problem in Theory

1. Observational Equivalence: mapping between structural parameters and
objective function has no unique maximum

• structural models with potentially different economic interpretations may be
indistinguishable

2. Under-identification: objective function is independent of certain structural
parameters, e.g. because they disappear from rational expectations solution

3. Partial identification with two or more structural parameters entering objective
function only proportionally, making them separately unrecoverable

4. Weak identification: parameter theoretically identified, but curvature may be
small in certain regions of the parameter space
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Identification Problem in Practice

• Lack of identification leads to wrong conclusions from calibration, estimation and
inference

• Many caveats due to identifiability issues and/or an unfortunate choice of
observables

• Difficult to maximize likelihood/posterior or minimize some (moment) objective function
• Estimators often lie on the boundary of theoretically admissible space
• Gaussian asymptotic theory yields poor approximations

• ”Unidentifiability causes no real difficulties in the Bayesian approach” (Lindley,
1971, p. 46) is misleading, because if parameters are not identifiable

• prior becomes extremely influential and needs to be informative for a proper posterior
• comparison of prior and posterior for non-identified parameters can be misleading

• Weak identification is likely a more serious concern for applied researchers

Is there a systematic way to detect such issues?
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Identification problem

Definitions



Theoretical Lack of Identification
Distinct parameter values do not lead to distinct objective functions of data (in the
injective sense)

• θ ∈ Θ: (unknown) vector of model parameters

• Θ: admissible parameter space for unique and stable solution

• YT : matrix of observables with sample size T

• p(θ; YT): objective function generated by a DSGE model (probability distribution,
likelihood, posterior or moment’s distance)

Definition: Global identification (Rothenberg, 1971)
A point θ0 ∈ Θ is said to be globally identified if for all YT :

p(θ0; YT) = p(θ1; YT) implies θ0 = θ1 (1)

Definition: Local identification (Rothenberg, 1971)
If (1) is true only for values θ̃ in an open neighborhood of θ0 , then θ0 is said to be
locally identified.
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Empirical Strength of Identification

• How much information can be extracted from a specific YT to estimate model
parameters precisely?

• More formally: What happens to the precision of estimates with a growing sample
size.
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Identification problem

Literature



Global Identification for Linearized Gaussian DSGE Models

• Minimizing Kullback-Leibler discrepancy (Qu and Tkachenko, 2017)

• Exploiting link between observationally equivalent state space representations
and model solution constraints (Kocicecki & Kolasa, 2018)

Local Identification for Linearized Gaussian DSGE Models

• Moments (Iskrev, 2010)

• Spectral density (Qu and Tkachenko, 2012)

• Control theory for minimal systems (Komunjer and Ng, 2011)

Local Identification for non-linear and/or non-Gaussian DSGE Models

• Cumulants and Polyspectra (Mutschler, 2015)

Weak Identification for Linearized Gaussian DSGE Models

• Asymptotic information matrix (Ratto and Iskrev, 2011; Andrle, 2010)

• Bayesian indicators (Koop, Pesaran and Smith, 2013)

• Indirect inference on VAR approximation (Le, Meenagh, Minford and Wickens, 2017)

• Score test on Gaussian likelihood (Qu, 2014)
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• Exploiting link between observationally equivalent state space representations
and model solution constraints (Kocicecki & Kolasa, 2018)

Local Identification for Linearized Gaussian DSGE Models

• Moments (Iskrev, 2010)Moments (Iskrev, 2010)

• Spectral density (Qu and Tkachenko, 2012)Spectral density (Qu and Tkachenko, 2012)

• Control theory for minimal systems (Komunjer and Ng, 2011)Control theory for minimal systems (Komunjer and Ng, 2011)

Local Identification for non-linear and/or non-Gaussian DSGE Models

• Cumulants and Polyspectra (Mutschler, 2015)Cumulants and Polyspectra (Mutschler, 2015)
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• Score test on Gaussian likelihood (Qu, 2014)

Moments (Iskrev, 2010)

Spectral density (Qu and Tkachenko, 2012)

Control theory for minimal systems (Komunjer and Ng, 2011)

Cumulants and Polyspectra (Mutschler, 2015)

Asymptotic information matrix (Ratto and Iskrev, 2011; Andrle, 2010)

Bayesian indicators (Koop, Pesaran and Smith, 2013)
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Local identification in linearized
DSGE models



Local identification in linearized
DSGE models

Linear state space system



Dynare’s linearized state-space form

zt − z̄ = ghx · (xt−1 − x̄) + ghu · ut

can be cast into the more familiar state-space form

xt − x̄ = A(θ)(xt−1 − x̄) + B(θ)ut [STATES]

yt − ȳ = C(θ)(xt−1 − x̄) + D(θ)ut [VAROBS]

where xt are state and yt observable variables.

As ut ∼ N (0,Σu), the unconditional first and second moments are given by:

E[yt] ≡ µy = ȳ, E(xt) ≡ µx = x̄

E[(yt − ȳ)(yt − ȳ′)] ≡ Σy(0) = CΣx(0)C′ + DΣuD′

E[(xt − x̄)(xt − x̄)′] ≡ Σx(0) = AΣx(0)A′ + BΣuB′

where the latter is the fixed point of the Lyapunov-equation.

From this, the theoretical autocovariogram (Σx(j) and Σy(j)) as well as the spectral
density (S2,x(ω) and S2,y(ω), ω ∈ [−π;π] ) can be (easily) computed
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Some notes

• In general, only observing yt would be insufficient to fully characterize the
distribution of xt (and of zt)

• Fortunately, our model implies restrictions through θ

• Mapping from structural parameters θ to (A,B, C,D) is highly nonlinear and only
implicitly available
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Local identification in linearized
DSGE models

Diagnostics based on moments



Proposition Moments (Iskrev, 2010)
Suppose that

m(q) :=
[
µ′y , vech(Σy(0))′, vec(Σy(1)), . . . , vec(Σy(T − 1))′

]
is a continuously differentiable function of θ ∈ Θ. Let θ0 ∈ Θ be a regular point, θ is
then locally identifiable at a point θ0 from the first two moments of yt , if the Jacobian
matrix

J =
∂m(q)
∂θ′

has full column rank at θ0 for q ≤ T . This condition is both necessary and sufficient
when q = T if ut is Gaussian.
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Intuition

• Mapping from population moments to structural parameter should be unique,
check injectivity by looking at Jacobian matrix

• Rank condition: Check whether derivative of the theoretical mean, variance and
autocovariogram of observables w.r.t structural parameters has full rank

• Order condition: At least as many moments as parameters

• Very helpful in detecting observational equivalence (columns of zeros and linear
dependence between parameters)

• Checking global identification is hard→ check local identification for relevant
parameter range

• time domain approach
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Decompose the Jacobian

J =
∂m(T)
∂τ ′

∂τ

∂θ′

where τ := [z̄′, vec(ghx)′, vech(ghu · Σu · ghu′)′]′ denote reduced form parameters

• ∂τ
∂θ′ shows how the parameters θ affect the (non-constant) model solution parts τ

• ∂m(T)
∂τ ′ shows how the model solution maps into the observed data moments

Corollary
The point θ0 is locally identifiable only if ∂τ∂θ′ at θ0 has full rank.

• Necessary condition as parameters only affect distribution of observables
through their effect on model solution

• It is not sufficient unless all states are observed
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Local identification in linearized
DSGE models

Diagnostics based on spectrum



Proposition Spectrum (Qu and Tkachenko, 2012)
Suppose that the spectral density S2,y is continuous in ω ∈ [−π;π] and continuous
and differentiable in θ ∈ Θ. Let

Ḡ =

(
∂µy

∂θ′

)′ (∂µy
∂θ′

)
+

∫ π

−π

(
∂S2,y
∂θ′

)∗ (
∂S2,y
∂θ′

)
dω

and θ0 ∈ Θ be a regular point. Furthermore, assume there is an open neighborhood of
θ0 in which Ḡ has a constant rank. Then θ is locally identifiable at a point θ0 from the
mean and spectrum of yt , if and only if Ḡ is non-singular and equal to the number of
parameters.
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Intuition

• Mapping from population mean and spectral density to structural parameters
should be unique, check injectivity by looking at Jacobian matrix

• Rank condition: Check whether derivative of the theoretical mean and spectrum
of observables w.r.t structural parameters has full rank

• Very helpful in detecting observational equivalence (columns of zeros and linear
dependence between parameters)

• Gram matrix structure numerically facilitates rank computations, no order
condition required

• Checking global identification is hard→ check local identification for relevant
parameter range

↪→ frequency domain approach
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Local identification in linearized
DSGE models

Diagnostics based on control theory
for minimal systems



Minimal State-Space System

• Dynamics are entirely driven by the smallest possible dimension of the state
vector (and shocks)

• Definition of minimality:
• Controllability: For any initial state, it is always possible to design an input sequence
that puts the system in the desired final state

• Observability: Given the evolution of the input it is always possible to reconstruct the
initial state by observing the evolution of the output

• Solution in Dynare is not based on the minimal state representation

• Numerical procedures (pole-zero cancellation) do not necessarily output minimal
states with economic meaning
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Proposition Minimal System (Komunjer and Ng, 2011)
Consider the minimal linearized DSGE model solution. Assume that the vector
containing the minimal solution matrices

Λ :=
(
vec(Ã)′, vec(B̃)′, vec(C̃)′, vec(D̃)′, vech(Σ̃u)

′
)′

is continuously differentiable on Θ. Two triples (θ0, Ix̃, Iu) and (θ1, T,U) are
observationally equivalent if

Ã(θ1) = TÃ(θ0)T−1, B̃(θ1) = TB̃(θ0)U−1, C̃(θ1) = C̃(θ0)T−1,Σu(θ1) = U−1Σu(θ0)U−1

with similarity transformation matrices T and U being full rank matrices.
Let θ0 ∈ Θ be a regular point, then θ is locally identifiable at a point θ0 from the
mean, autocovariances, and spectrum of yt if and only if:

∆̄ :=



∂µy
∂θ′ 0 0

∂vec(Ã)
∂θ′ Ã′ ⊗ I − I ⊗ Ã 0

∂vec(B̃)
∂θ′ B̃′ ⊗ I I ⊗ B̃

∂vec(C̃)
∂θ′ −I ⊗ C̃ 0

∂vec(D̃)
∂θ′ 0 I ⊗ D̃

∂vec(Σu)
∂θ′ 0 −2[Σu ⊗ I]



has full column rank.
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Intuition

• Based upon identification results from control theory for minimal systems
• Derive restrictions implied by equivalent model dynamics without computing any
autocovariances or the spectral density

• for given size of shocks Σu , each transfer function is potentially obtained from a
multitude of quadruples (A, B, C, D)

• many pairs of transfer functions and size of shocks Σu that jointly generate the same
spectral density or autocovariogram

• Rank condition: Check injectivity of these restrictions using a Jacobian matrix

• Order condition and some other useful diagnostics for IRFs
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Local identification in linearized
DSGE models

Dynare implementation



Dynare command identification;
Triggers the local identification tests and has two modes of operation:

• Point identification check (default)
• Monte Carlo mode (prior_mc>1):

• Draw θ from Θ (ensuring stability and determinacy)
• Compute point identification checks and repeat many times

If there is an estimated_params block

• with prior information: the program performs the local identification checks for
the estimated parameters at the prior mean (prior mode, posterior mean and
posterior mode are also alternative options)

• for ML estimation (no prior definition): local identification checks are performed
for the estimated parameters at the actual or initial value declared for estimation
(ML value is also possible)

Otherwise all model parameters and stderr parameters are considered
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WARNING: Use best practices in your mod file!

• Dynare’s symbolic preprocessor interprets and implements the model definitions
as expressed in the Dynare file

• It will not reflect all parameter definitions which may be hidden e.g. in a custom
_steadystate.m file (use steady_state_model instead)

• Try to avoid declaring auxiliary parameters, but use the ’#’ syntax in the model
block of the Dynare file to declare endogenous parameters instead
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Tracking singularities
Whenever some of the Jacobian matrices are rank deficient, the code tries to diagnose
the subset of parameters responsible for the rank deficiency:

1. ranks are computed using the singular value decomposition

2. if there are columns of zeros in the Jacobian matrix, the associated parameter is
printed on the MATLAB command window

3. compute pairwise- and multi-correlation coefficients for each column of the
Jacobian matrix: if there are parameters with correlation coefficients equal to
unity, these are printed on the MATLAB command window

Alternatively, a brute-force approach to check rank conditions for all possible combinations can be triggered (checks_via_subsets=1)
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Example ’Point Identification Mode’: investadjust.mod

======== Identification Analysis ========
...
Testing calibration
...
REDUCED-FORM:
!!!WARNING!!!
The rank of Tau (Jacobian of steady state and reduced-form solution matrices) is deficient!

RA is not identified!

MINIMAL SYSTEM (KOMUNJER AND NG, 2011):
!!!WARNING!!!
The rank of Deltabar (Jacobian of steady state and minimal system) is deficient!

RA is not identified!
[KAPPA,THETA] are PAIRWISE collinear!

SPECTRUM (QU AND TKACHENKO, 2012):
!!!WARNING!!!
The rank of Gbar (Jacobian of mean and spectrum) is deficient!

RA is not identified!
[KAPPA,THETA] are PAIRWISE collinear!

MOMENTS (ISKREV, 2010):
!!!WARNING!!!
The rank of J (Jacobian of first two moments) is deficient!

RA is not identified!
[KAPPA,THETA] are PAIRWISE collinear!

==== Identification analysis completed ====
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Example ’Monte Carlo Mode’: investadjust.mod

======== Identification Analysis ========
...
Monte Carlo Testing

Testing MC sample
...
REDUCED-FORM:
!!!WARNING!!!
The rank of Tau (Jacobian of steady state and reduced-form solution matrices) is deficient for 20 out of 20 MC runs!

RA is not identified for 100% of MC runs!

MINIMAL SYSTEM (KOMUNJER AND NG, 2011):
!!!WARNING!!!
The rank of Deltabar (Jacobian of steady state and minimal system) is deficient for 20 out of 20 MC runs!

RA is not identified for 100% of MC runs!
[KAPPA,THETA] are PAIRWISE collinear for 100% of MC runs!

SPECTRUM (QU AND TKACHENKO, 2012):
!!!WARNING!!!
The rank of Gbar (Jacobian of mean and spectrum) is deficient for 20 out of 20 MC runs!

RA is not identified for 100% of MC runs!
[KAPPA,THETA] are PAIRWISE collinear for 90% of MC runs!

MOMENTS (ISKREV, 2010):
!!!WARNING!!!
The rank of J (Jacobian of first two moments) is deficient for 20 out of 20 MC runs!

RA is not identified for 100% of MC runs!
[KAPPA,THETA] are PAIRWISE collinear for 100% of MC runs!

==== Identification analysis completed ====
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Local identification in linearized
DSGE models

Computational Remarks



Settings

Note that differences in the criteria could be due to numerical settings,
numerical errors or the method used to find problematic parameter sets.

Settings:
Derivation mode for Jacobians: Analytic using sylvester equations
Method to find problematic parameters: Nullspace and multicorrelation coefficients
Normalize Jacobians: Yes
Tolerance level for rank computations: robust
Tolerance level for selecting nonzero columns: 1e-08
Tolerance level for selecting nonzero singular values: 1e-03

• Key issue: distinguish possible weak identification, that is, near linear
dependence, form true perfect collinearity

• Errors of numerical differentiations: the rank test for singularity is much more
sensitive to the significance threshold set the by user in checking the rank when
numerical derivatives are used

• Whenever possible the code uses closed-form expressions to compute the
Jacobians analytically
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Analytic Jacobians

• Basic idea: view f as a function of θ and of the steady-state vector z(θ), which is
also a function of θ

• Thus, implicitly we have f (z(θ), θ) = 0

• Differentiating yields parameter derivatives of dynamic model Jacobian (g_1) and
dynamic Hessian (g_2) and also higher-order derivatives of dynamic model

• Then it is straightforward (but very tedious) to derive closed-forms for the
derivatives of first-order, second-order and third-order solution matrices wrt
parameters

↪→ get_perturbation_params_derivs.m

• Once we have that, we can compute identification Jacobians in closed-form (no
need to rely on numerical differentiation)

• Closed-form expressions using either Kronecker products or (more efficient)
generalized Sylvester equations (default)
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Identification Strength



Identification Strength

Intuition



Weak identification

• Even though all parameters are locally identifiable (enter objective function
separately and it has a unique extremum), its curvature may be small in certain
regions of the parameter space (especially in small samples)

• Diagnostics are based on precision of parameter estimates computed via
• Inverse of (asymptotic) Fisher Information Matrix (Andrle, 2010; Ratto and Iskrev, 2011)
• Bayesian Learning Rate Indicator for growing sample sizes (Koop, Pesaran, Smith, 2013)
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Identification Strength

Asymptotic Information Matrix



The Information Matrix Revisited
The precision of parameter estimates at the mode is given (asymptotically) by the
inverse of the Fisher Information Matrix

I(θ) = E
[(

∂ log (p(y|θ))
∂θ′

)′ (∂ log (p(y|θ))
∂θ′

)]
Typically, non-singularity of this matrix is sufficient for local identification

Can be decomposed
I(θ) = ∆

1
2 Ĩ(θ)∆

1
2

into a variance matrix
∆ = diag(I(θ))

and a correlation matrix
Ĩ(θ)
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Identification Strength Intuition
Here, we can again see our two reasons for non-identifiability:

1. The likelihood does not change when parameter i changes:

∂ log (p(y|θ))
∂θi

= 0 ⇔ ∆i = 0

2. The effect on the likelihood is offset due to perfect correlation:

ρi ≡ corr
(
∂ log (p(y|θ))

∂θi
,
∂ log (p(y|θ))

∂θ−i

)
= 1

This suggests that we can use this curvature information also for weak identification
as in that case ∆i ≈ 0 and/or ρi ≈ 1
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Identification Strength Formally

• If I(θ) is not singular, Cramer-Rao bound of the uncertainty of estimated θi :

std(θi) ≥
√

{I(θ)−1}(ii)

• Identification strength can therefore be measured using (Andrle, 2010):

si(θi) ≡ std(θi)−1 =
1√

{I(θ)−1}(ii)
=

√
∆i(1− ρ2i )

• As this precision measure only uses the population objective function (expected
log-likelihood), it is an a-priori measure

• At the same time, it can be interpreted as the lower bound on the estimation
uncertainty in an unbiased finite sample estimator
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Identification Strength

Dynare implementation



Identification Strength Measure in Dynare

• Problem: measure is percentage change in likelihood for unit change in
parameter→ not unit free

• Solution: multiply by the value of θi to get a re-normalized version of the
‘curvature’:

sdyni (θi) ≡ θi × si(θi) =

√√√√ θi
2

{I(θ)−1}(ii)
=

√
θi
2∆i ×

√
(1− ρ2i ) [STRENGTH]

• Can be interpreted as an ‘a-priori t-test’

• Taking square of θ assures it to be positive

• The sensitivity component contained in this measure (as opposed to the
correlation component) is defined as

∆dyn
i =

√
θ2i ∆i =

√
θ2i I(θ)(i,i) [SENSITIVITY]

is the elasticity of the likelihood function w.r.t. θi (keeping all other parameters
constant)
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(1− ρ2i ) [STRENGTH]

• Can be interpreted as an ‘a-priori t-test’

• Taking square of θ assures it to be positive

• The sensitivity component contained in this measure (as opposed to the
correlation component) is defined as

∆dyn
i =

√
θ2i ∆i =

√
θ2i I(θ)(i,i) [SENSITIVITY]

is the elasticity of the likelihood function w.r.t. θi (keeping all other parameters
constant)
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Alternative Normalization

• Identification is often checked over the prior region, e.g. at the prior mean

• Because some parameters may have a prior mean of zero, alternative
normalization using the prior standard deviation σ(θi):

spriori = σ(θi)/
√

(I(θ)−1)(i,i) [STRENGTH]

∆prior
i = σ(θi) ·

√
I(θ)(i,i) [SENSITIVITY]

41



Alternative Normalization

• Identification is often checked over the prior region, e.g. at the prior mean

• Because some parameters may have a prior mean of zero, alternative
normalization using the prior standard deviation σ(θi):

spriori = σ(θi)/
√

(I(θ)−1)(i,i) [STRENGTH]

∆prior
i = σ(θi) ·

√
I(θ)(i,i) [SENSITIVITY]

41



Identification Strength Plots
The identification toolbox shows, after the check of rank conditions, the plots of the
strength of identification and of the sensitivity component for all estimated
parameters.
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Identification strength with moments Information matrix (log-scale)
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Numerical Remark: Computing I(θ)

Asymptotic Information Matrix
Given a sample size T , the Fischer information matrix I(θ) can be computed
analytically as discussed in Iskrev (2009). This also provides an estimate of the
Cramer-Rao lower bound of uncertainty of θ.

Simulated moments
Perform stochastic simulations for T periods and compute sample moments of
observed variables; repeat for Nr replicas, getting Nr samples of simulated moments;
take the covariance matrix Σ(mT) of (first and second) simulated moments.

A ‘moment information matrix’ can be defined as I(θ|mT) = J · Σ(mT)
−1 · J′ . This does

NOT provide an estimate of the Cramer-Rao lower bound. Used with stochastic
singularity and whenever the Asymptotic Information Matrix cannot be computed.
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Identification Strength

Bayesian Learning Rate Indicator



Koop, Pesaran and Smith (2013)’s approach

• Basic idea: strength of identification becomes better as more data becomes
available, i.e. parameters are estimated more precisely

• Suppose θ2 is identified, whereas θ1 is weakly identified such that the rank of the
reduced-form parameters depends on the sample size T

• For growing T the posterior precision of
• θ1 divided by the sample size will go to zero.
• θ2 divided by the sample size will go to a constant.

↪→ Bayesian simulation approach
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Implementation

• Not yet implemented as an option in the toolbox, but actually very easy to do:

• Simulate large dataset, estimate with Bayesian MCMC using first e.g. 75, 150, 300,
600,... observations

• Look at either average posterior precisions or convergence ratios:
• ratio of two subsequent estiamted posterior precision values, e.g. at T=150 and T=300,
and check whether this ratio is close to the rate at which T increases, i.e. close to
300/150=2

• Slice with double rotation (50x200x2500 draws) works very well as it requires
almost no fine-tuning (and no mode-finding step)

• Use parallel option to get more chains

46



Average Posterior Precisions

T α RA δ ρA σA θ κ
100 5.02419 0.16006 68.06352 2.35966 2.23979 0.01789 0.00460
300 1.66330 0.05318 10.19060 1.66202 0.37313 0.00576 0.00227
900 0.60317 0.01777 4.79942 1.37207 0.24600 0.00194 0.00066
2700 0.23070 0.00594 2.50897 1.28453 0.16133 0.00066 0.00015
8100 0.10292 0.00199 1.48975 1.29131 0.06690 0.00023 0.00005

Convergence Ratios

dT α RA δ ρA σA θ κ
300/100 0.993 0.997 0.449 2.113 0.500 0.966 1.479
900/300 1.088 1.003 1.413 2.477 1.978 1.009 0.868
2700/900 1.147 1.002 1.568 2.809 1.967 1.017 0.693
8100/2700 1.338 1.004 1.781 3.016 1.244 1.063 0.927

Insights

• Only ρA is strongly identifiable

• Estimating non-identified models yields severe problems in the estimation of
other, actually identified model parameters, as we do not fix either θ or κ

• Fixing theoretical lack of identification is also important from a Bayesian
perspective
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The advanced option of the toolbox



Point mode

• Different Sensitivity Measure

• Analysis of the LRE form (steady-state and dynamic model derivatives) for all
model variables

• Analysis of the reduced form (steady-state and solution matrices) for all model
variables

• Analysis of identification patterns based on regressions and SVD

Monte Carlo mode

• Analysis of the condition number of the Jacobians of moments, reduced-form and
Linear Rational Expectations model and detection of the parameters that mostly
drive large condition numbers (i.e. weaker identification)

• Analysis of the identification patterns across the Monte Carlo sample

• Detailed point-estimate (identification strength and collinearity analysis) of the
parameters set having the smallest/largest condition number

• When some singularity (rank condition failure) is detected for some elements of
the Monte Carlo sample, detailed point-estimates are performed for such critical
points
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A Different Sensitivity Measure

• Another sensitivity measure is how changes in the elements of the parameter
vector θ impact the model moments, the reduced form solution, and the dynamic
model

• Can be measured locally using the corresponding Jacobian with certain
normalizations to account for

• different parameter uncertainty by ascribing more importance to more variable
parameters

• differently volatile moments, solution matrices, or dynamic Jacobians

• Norm of the columns of the standardized Jacobian yields single aggregate
sensitivity measure over all moments, solution matrices, or dynamic model
Jacobians for each parameter

49



Sensitivity bars using derivatives (log-scale)
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Figure 3: Sensitivity measure, see investadjust.mod

The respective Jacobian matrices refer to the

1. moments matrix (∂mT/∂θ
′), indicating how well a parameter can be identified

due the strength of its impact on the observed moments
2. model solution matrices (∂τ/∂θ′), indicating how well a parameter could in
principle be identified if all state variables were observed

3. Linear Rational Expectations model (∂LRE/∂θ′), indicating trivial cases of
non-identifiability due to e.g. some parameters always showing up as a product in
the model equations
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Analyzing identification patterns

1. Iskrev (2010): check which group of one, two or more parameters is most capable
to mimic (replace) the effect of each parameter. A brute force search is done for
each column of J(j) to detect the group of columns J(I+j) , having the highest
explanatory power for J(j) by a linear regression

2. Andrle (2010): the identification patterns are shown by taking the singular value
decomposition of I(θ) or of the J matrix and displaying the eigenvectors
corresponding to the smallest (or highest) singular values
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Correlation Component (Iskrev, 2010)

• Even if the likelihood itself is sensitive, there might be (perfect) co-linearity

• Need to look at correlation component of columns

• This analysis is conducted via brute force: For each single parameter, a set of
regressions is run of the column of the Jacobian corresponding to the parameter
in the row on all possible combinations of other Jacobian columns

• Aim: finding the column (and thus parameter) combination with the highest R2 .
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Correlation Component of Columns, 1 parameter
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Correlation Component of Columens, 2 parameter
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Identification Patterns Based on Singular Values

• Following Andrle (2010), identification can also be judged from a singular value
decomposition (SVD) of the information matrix

• Provides the size of the singular values and the associated eigenvectors (i.e.
parameters)

• Parameter combinations associated with the smallest singular values are closest
to being perfectly collinear and thus redundant

• Singular value of 0 implies that the parameter is completely unidentified as it is
responsible for the information matrix being rank deficient
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Identification patterns – Smallest SV
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Identification patterns – Largest SV
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Identification of nonlinear and
non-Gaussian DSGE models



Identification of nonlinear and
non-Gaussian DSGE models

Pruned-State-Space



General DSGE model
Etf (zt+1, zt, zt−1, ut|θ) = 0,

zt = g(zt−1, ut|θ), yt = g̃(xt, ut|θ),

where yt are observables, xt states, ut shocks and zt all endogenous

Solution method: Perturbation

• Taylor-approximation around the non-stochastic steady-state:

zt = z̄ + gx(xt−1 − x̄) + guut

+
1
2

[
gxx(xt−1 − x̄) ⊗ (xt−1 − x̄) + 2gxu(xt−1 ⊗ ut) + guu(ut ⊗ ut) + gσσσ

2
]

+
1
6
[. . . ] + . . .
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Problem of higher-order Taylor approximations

• Possibility of explosive behavior in higher-order approximations

• Model may not be stationary or does not have an ergodic probability distribution

Solution: Pruning

• Idea: Leaving out terms in the solution that have higher-order effects than the
approximation order

• Kim, Kim, Schaumburg and Sims (2008) and Andreasen, Fernández-Villaverde and
Rubio-Ramírez (2016) show that pruned state space is stationary and ergodic

• Lombardo and Uhlig (2014) or Lan and Meyer-Gohde (2013) provide theoretical
foundation for this seemingly ad-hoc procedure
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Example with simple univariate model

• xt = gxxt−1 + gxxx2t−1 + guut, |gx| < 1, gxx > 0

• Two fixed points: x̄ = 0 and x̄ = (1− gx)/gxx

↪→ Once the model passes the second steady state it explodes

• Pruning: Decompose state vector into 1st- and 2nd-order effects

xt = xft + xst = gxxft−1 + gxxst−1 + gxx
(
xft−1

)2
+ 2gxx

(
xft−1x

s
t−1

)2
+ gxx

(
xst−1

)2
+ guut

• Stable solution: Prune terms that contain xft x
s
t and (xst )

2

xft = gxxft−1 + guut, xst = gxxst−1 + gxx(xft−1)
2
,

(xft )
2 = g2x

(
xft−1

)2
+ 2gxguxft−1ut + g2uu

2
t

• Pruned solution can be rewritten as a stable state-space system

xft
xst
xf
2
t


︸ ︷︷ ︸

zt

=



gx 0 0
0 gx gxx
0 0 g2x


︸ ︷︷ ︸

A



xft−1
xst−1

xf
2
t−1


︸ ︷︷ ︸

zt−1

+



gu 0 0
0 0 0
0 2gxgu g2u


︸ ︷︷ ︸

B



ut
xft−1ut
u2t − σ2u


︸ ︷︷ ︸

ξt

+

 0
0

g2uσ
2
u



︸ ︷︷ ︸

c
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Pruned state-space
Given an extended state vector zt and an extended vector of innovations ξt , the
pruned solution of a DSGE model can be rewritten as a linear time-invariant
state-space system:

zt = c + Azt−1 + Bξt
yt = ȳ + d+ Czt−1 + Dξt

• Same procedure for higher-order approximations

• Straightforward to compute moments, cumulants and polyspectra

• Note: Even if ut is Gaussian, ξt is not!

↪→ Higher-order statistics (HOS) may contain additional information for estimation
and identification
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Identification of nonlinear and
non-Gaussian DSGE models

Diagnostics



Local identification diagnostics

• We can use the same diagnostics based on moments or the spectrum to detect
local identification issues

• Note that first and second moments and the power spectrum are computed from
the pruned state-space system

• Higher-order moments and polyspectra might be also considered (not yet in
Dynare)

• Identification Strength
• Asymptotic information matrix is not available analytically, but covariance of moments
is approximated by simulation from pruned state space

• Bayesian Learning Rate indicator is readily available; however, one needs to use a
nonlinear Kalman filter or a particle filter to evaluate the likelihood
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investadjust.mod: identification(order=2)

======== Identification Analysis ========
Based on Pruned State Space System (order=2)
...
Testing prior mean
...
REDUCED-FORM:
!!!WARNING!!!
The rank of Tau (Jacobian of steady state and reduced-form solution matrices) is deficient!

RA is not identified!

MINIMAL SYSTEM (KOMUNJER AND NG, 2011):
!!!WARNING!!!
The rank of Deltabar (Jacobian of first-order minimal system and second-
order accurate mean) is deficient!

RA is not identified!

SPECTRUM (MUTSCHLER, 2015):
!!!WARNING!!!
The rank of Gbar (Jacobian of mean and spectrum) is deficient!

RA is not identified!

MOMENTS (MUTSCHLER, 2015):
!!!WARNING!!!
The rank of Mbar (Jacobian of first two moments) is deficient!

RA is not identified!

==== Identification analysis completed ====
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Identification Strength based on Simulated Moments from Pruned State Space

Identification strength with moments Information matrix (log-scale)
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Sensitivity component with moments Information matrix (log-scale)
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Concluding Remarks



Concluding Remarks

• Identifiability is a model property that depends on the choices a modeler makes:
(1) choice of observables, (2) functional specifications, (3) model features and (4)
choice of structural shocks (Ivashchenko and Mutschler, 2019)

• Fix obvious identification failures: calibrate or (better) reparameterize!
• Change your model slighty, e.g. investadjust.mod model:

• use intertemporal adjustment costs based on investment growth

Kt = (1− δ)Kt−1 + It
(
1− S

( It
It

))
• add capital utilization
• add investment-specific technological shock (best for strength)
• include labor choice

• Larger models tend to be theoretically identified, but suffer from weak
identification

• Robust inference under possible weak identification (Dufour et al., 2009, 2013; Kleibergen
and Mavroeidis, 2009; Mavroeidis, 2005, 2010; Guerron-Quintana et al.,2013; Andrews and
Mikusheva, 2014; Qu, 2014)

• wide confidence intervals for weakly identified parameters can be accompanied by
narrow bands for IRFs

• Nonlinear or non-Gaussian approach might enrich identifiability and model
dynamics (but comes at a price)
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