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Motivation



Motivation

Estimation of DSGE models has rapidly progressed


Parameter identification 


• is a regularity condition 


• can and should be assessed before taking your model to data


• is a model property



Dynare's Identification Toolbox

Based on well-established diagnostics and indicators to detect


• theoretical identification failures


• weak identification


Feature requests and contributions are very welcome!



Example 1
Likelihood shape







Example 2
ARMA(1,1)



xt − ϕ1xt−1 = εt − ϕ2εt−1,  with εt
iid∼ N(0,σ2)
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arma_plots.mod
arma_common.inc



ARMA(1,1)
ARMA(1,1) autocovariance function (define ):


  ,  

Case 1: equal coefficients ( ) autocovariance function:


 


Case 2: White Noise ( )  autocovariance function: 


 

γj = E[xtxt−j]

γ0 =
(1 + ϕ2

2 − 2ϕ1ϕ2)σ2

1 − ϕ2
1

, γ1 =
(ϕ1 − ϕ2)(1 − ϕ1ϕ2)σ2

1 − ϕ2
1

γh = ϕ1γh−1

ϕ1 = ϕ2

γ0 = σ2, γh = 0

ϕ1 = ϕ2 = 0

γ0 = σ2, γh = 0



ARMA(1,1)
Observational equivalence between cases 1 and 2

arma_identif.mod



Example 3
Forward-looking DSGE model



Forward-looking DSGE model

Taylor-rule:              

Dynamic IS:             

NK-Phillips curve: 

rt = ψπt + εM
t

xt = Etxt+1 −
1
τ

(rt − Etπt+1) + εD
t

πt = βEtπt+1 + κxt + εS
t



Forward-looking model

 


Stationary solution implies Eigenvalues of  lie within unit circle


1 0 −ψ
1
τ 1 0
0 −κ 1
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xt
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⏟
yt

=
0 0 0
0 1 1

τ
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Etrt+1

Etxt+1

Etπt+1

Etyt+1

+
εM

t

εD
t

εS
t

⏟
εt

A−1
0 A1

yt = A−1
0 A1Etyt+1 + A−1

0 εt =
∞

∑
j=0

(A−1
0 A1)jA−1

0 Etεt+j = A−1
0 εt

forward_looking_common.inc



Forward-looking model
Stationary solution implies Eigenvalues of  lie within unit circle


 

A−1
0 A1

yt = A−1
0 A1Etyt+1 + A−1

0 εt =
∞

∑
j=0

(A−1
0 A1)jA−1
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Forward-looking model

 


‣ Parameter space is not variation free 
(bounds on parameters to ensure 
Eigenvalues of  inside unit circle) 


‣ Some parameters ( ) do not enter 
solution; thus, do not enter the likelihood 
(or any other objective)


‣  is product of several other structural 
parameters (Calvo or Rotemberg) 


‣ Identification depends on observables, 
e.g. when observing only 

•  and  are pairwise colinear


•  and  are pairwise colinear


• we would need to fix e.g. 

rt
xt
πt

=
1

κψ
τ + 1

1 κψ ψ

− 1
τ 1 − ψ

τ

− κ
τ κ 1

A−1
0

εM
t

εD
t
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τ κ

κ ψ
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Forward-looking model
varobs x;

forward_looking_varobs_x.mod



Forward-looking model
varobs r x p;

forward_looking_varobs_all.mod



Which observables?
Observing all variables would be best, but unrealistic as we face typical trade-offs:


• what can you actually observe in data?


• how to match model variables to data?


• some estimation techniques require as many observables as shocks


Some guidance:


• Different combinations of observables influence identification


• dynare_sensitvitiy helps get intuition and insights which parameters are most important for which 
variables


• Brute-force: try out all combinations and take the one that works best



Example 4
Investment Adjustment Costs



Kim (2003)
RBC model: ,  ,   

Two types of investment adjustment costs


 

Ut = ln(Ct) Yt = AtKα
t−1 ln(At) = ρA ln(At−1) + εA

t

Yd
t = [(1 − SAV)( Ct

1 − SAV )
1+θ

+ SAV( It

SAV )
1+θ

]
1

1 + θ

, with SAV =
Ī

Ȳd

Kt = [(1 − δ)Kt−1
1−κ + δ( It

δ )
1−κ

]
1

1 − κ

investadjust_common.inc



Kim (2003): Different parametrizations

investadjust_baseline.mod

 and κ = 2 θ = 1.5 and κ = 1.4 θ = 0  and κ = 0 θ = − 3.5

investadjust_nointertempcosts.modinvestadjust_nomulticosts.mod



Kim (2003): varobs c iv

 and  are jointly non-identifiable 

as long as  stays the same value

(θ, κ) κ
θ + κ
1 + θ

investadjust_identif.mod



Kim (2003): varobs c iv lam

Observing lagrange multipliers  or 
Tobin's  provides means to identify 

 separately


What about ?

λ
Q

(θ, κ)

rA

investadjust_identif_lam.mod



Kim (2003): What about rA

investadjust_identif.mod

typical failure:  β =
1

1 + rA/400



Kim (2003): Insights
• Different parameters yield same theoretical moments for y, c, iv, rk and a; 

 therefore also observational equivalent model dynamics (e.g. IRFs)


• At first-order, perturbation solution is linear Gaussian state space 
 First two moments characterize whole distribution (higher-order 

moments, IRFs, variance decomposition, etc)


• Even with an infinite sample size, no way to uniquely recover true model 
structure


• Observing lam or Q identifies model parameters, but unrealistic

↪

↪



Parameter Identification in 
Theory and Practice



Identification Problem in Theory
Observational Equivalence: structural models with potentially different 
economic interpretations may be indistinguishable


Under-identification: objective function is independent of certain structural 
parameters, e.g. because they disappear from rational expectations solution


Partial identification: with two or more structural parameters entering objective 
function only proportionally, making them separately unrecoverable


Weak identification: parameter theoretically identified, but curvature may be 
small in certain regions of the parameter space



Identification Problem in Practice
Lack of identification leads to wrong conclusions from calibration, estimation and 
inference


Many caveats due to identifiability issues and/or an unfortunate choice of observables


• difficult to maximize likelihood/posterior or minimize some (moment) objective 
function


• estimators often lie on the boundary of theoretically admissible space


• Gaussian asymptotic theory yields poor approximations


Weak identification is likely a more serious concern for applied researchers



Lindley (1971, p. 46)

“Unidentifiability causes no real difficulties in the Bayesian approach” 



Is there a systematic way to 
detect such issues?



Theoretical Lack of Identification

Distinct parameter values do not lead to distinct objective functions of data


Global vs. local identifiability



Definitions

: vector of model parameters


: admissable parameter space for unique and stable solution


: matrix of observables with sample size T


: objective function generated by a DSGE model

θ ∈ Θ

Θ

YT

p(θ; YT)



Global and local identification 
 (Rotemberg, 1971)

A point  is said to be globally identified if for all :


 


If this is true only for values  in an open neighborhood of , then  is said 
to be locally identified.

θ0 ∈ Θ YT

p(θ0; YT) = p(θ1; YT) implies θ0 = θ1

θ̃ θ0 θ0



Strength of Identification

How much information can be extracted from a specific  to estimate model 
parameters precisely?


More formally: What happens to the precision of estimates with a growing 
sample size.

YT



Literature



Literature: Global Identification

๏Minimizing Kullback-Leibler discrepancy (Qu and Tkachenko, 2017)


๏Exploiting link between observationally equivalent state space 
representations and model solution constraints (Kocicecki & Kolasa, 2018)



Literature: Local Identification

For linearized Gaussian DSGE models


✓Moments (Iskrev, 2010; Ratto and Iskrev, 2011)


✓Spectral density (Qu and Tkachenko, 2012)


✓Control theory for minimal systems (Komunjer and Ng, 2011)



Literature: Local Identification

For non-linear and/or non-Gaussian DSGE models


✓Cumulants and Polyspectra (Mutschler, 2015)


✓Adding mean restrictions to minimal first-order system (Mutschler, 2014)



Literature: Weak Identification

For linearized (and non-linear) DSGE models


✓Asymptotic information matrix (Ratto and Iskrev, 2011; Andrle, 2010)


✴Bayesian indicators (Koop, Pesaran and Smith, 2013)


๏ Indirect inference on VAR approximation (Le, Meenagh, Minford and 
Wickens, 2017)


๏Score test on Gaussian likelihood (Qu, 2014)



Identification in linearized 
Gaussian DSGE models



Linear Gaussian state space system
Dynare's first-order perturbation solution for endogenous variables  given 
state variables  and shocks :


 


Rewrite to more familiar state-space form:


    [STATES] 
   [VAROBS]


where 

zt
xt ut

zt − z̄ = ghx ⋅ (xt−1 − x̄) + ghu ⋅ ut

xt − x̄ = A(θ)(xt−1 − x̄) + B(θ)ut
yt − ȳ = C(θ)(xt−1 − x̄) + D(θ)ut

ut ∼ N(0,Σu)



Linear state space system

As , the unconditional first and second moments are


 


 


 


where  is fixed point of Lyapunov equation

ut ∼ 𝒩(0,Σu)

E[yt] ≡ μy = ȳ, E(xt) ≡ μx = x̄

E[(yt − ȳ)(yt − ȳ′￼)] ≡ Σy(0) = CΣx(0)C′￼+ DΣuD′￼

E[(xt − x̄)(xt − x̄)′￼] ≡ Σx(0) = AΣx(0)A′￼+ BΣuB′￼

Σx(0)



Linear state space system

From this one can compute the 


• theoretical autocovariogram  and 

• theoretical spectral density  and  for 

• minimal state space system with minimal state variables 

Σx( j) Σy( j)

𝒮2,x(ω) 𝒮2,y(ω) ω ∈ [−π; π]

x̃t



Some remarks

In general, only observing  would be insufficient to fully characterize the 
distribution of state variables  and all endogenous variables 

Fortunately, our model implies restrictions through 

Mapping from structural parameters  to  is highly 
nonlinear and only implicitly available

yt
xt yt

θ

θ (A(θ), B(θ), C(θ), D(θ))



Diagnostics based on moments



Moments (Iskrev, 2010)
Proposition: Suppose that 


is a continuously differentiable function of . Let  be a regular point.  is then 
locally identifiable at a point  from the first two moments of , if the Jacobian matrix


has full column rank at  for . 


This condition is both necessary and sufficient when  if  is Gaussian.

m(q) := [μ′￼y, vech(Σy(0))′￼, vec(Σy(1)), …, vec(Σy(q))′￼]
θ ∈ Θ θ0 ∈ Θ θ

θ0 YT

J =
∂m(q)

∂θ′￼

θ0 q ≤ T

q = T ut



Intuition
Unique (injective) mapping from structural parameters to population moments


Check injectivity by looking at rank of Jacobian matrix


• Order condition: At least as many moments as parameters 


• Rank condition: Check whether Jacobian of theoretical mean, variance and autocovariogram 
of observables w.r.t structural parameters has full rank


Very helpful in detecting observational equivalence (columns of zeros and linear dependence 
between parameters)


Checking global identification is hard, but one can check local identification for relevant 
parameter range



Decomposing Jacobian of Moments

 


Reduced-form parameters: 

 : sensitivity of model solution parts  to changes in model parameters 

: sensitivity of observed data moments to changes in model solution

J =
∂m(T)

∂τ′￼

∂τ
∂θ′￼

τ := [z̄′￼, vec(ghx)′￼, vech(ghu ⋅ Σu ⋅ ghu′￼)′￼]′￼

∂τ
∂θ′￼

τ θ

∂m(T)
∂τ′￼



Jacobian of Reduced-Form

Corollary: The point  is locally identifiable only if at  has full rank.


• Necessary condition as parameters only affect distribution of observables 
through their effect on model solution


• It is not sufficient unless all variables are observed


θ0
∂τ
∂θ′￼

θ0



Diagnostics based on spectrum



Spectrum (Qu and Tkachenko, 2012)
Proposition: Suppose that the spectral density  is continuous in 

 and continuous and differentiable in . Let


and  be a regular point. Furthermore, assume there is an open 
neighborhood of  in which  has a constant rank. Then  is locally 
identifiable at a point  from the mean and spectrum of , if and only if  is 
non-singular and equal to the number of parameters.

𝒮2,y
(ω ∈ [−π; π] θ ∈ Θ

Ḡ = (
∂μy

∂θ′￼)
′￼

(
∂μy

∂θ′￼) + ∫
π

−π (
∂𝒮2,y

∂θ′￼ )
*

(
∂𝒮2,y

∂θ′￼ ) dω

θ0 ∈ Θ
θ0 Ḡ θ

θ0 YT Ḡ



Intuition
Unique (injective) mapping from structural parameters to population mean and spectral density 


Check injectivity by looking at rank of Jacobian matrix


• Rank condition: Jacobian of theoretical mean and spectrum of observables w.r.t structural 
parameters has full rank


Very helpful in detecting observational equivalence (columns of zeros and linear dependence 
between parameters or try all combinations of sets of parameters);


Gram matrix structure numerically facilitates rank computations, no order condition required


Checking global identification is hard, but one can check local identification for relevant 
parameter range



Diagnostics based on control 
theory for minimal systems



Minimal State Space System
Dynamics are entirely driven by the smallest possible dimension of the state vector (and shocks)


Definition of minimality:


• Controllability: For any initial state, it is always possible to design an input sequence that puts 
the system in the desired final state


• Observability: Given the evolution of the input it is always possible to reconstruct the initial 
state by observing the evolution of the output


Solution in Dynare is by default not based on the minimal state representation (but there is a 
function get_minimal_state_representation.m)


Numerical procedures (pole-zero cancellation) do not necessarily output minimal states with 
economic meaning



Minimal System (Komunjer and Ng, 2011)
Proposition: Consider the minimal linearized DSGE model solution. Assume that the 
vector containing the minimal solution matrices


 

is continuously differentiable on . Two triples  and  are 
observationally equivalent if 


with similarity transformation matrices  and  being full rank matrices.


Λ := (vec(Ã)′￼, vec(B̃)′￼, vec(C̃)′￼, vec(D̃)′￼, vech(Σ̃u)′￼)′￼

Θ (θ0, Ix̃, Iu) (θ1, T, U)

Ã(θ1) = TÃ(θ0)T−1, B̃(θ1) = TB̃(θ0)U−1, C̃(θ1) = C̃(θ0)T−1, Σu(θ1) = U−1Σu(θ0)U−1

T U



Minimal System (Komunjer and Ng, 2011)
Proposition (continued): Let  be a regular point, then  is locally identifiable at a point  from the 
mean, autocovariances, and spectrum of  if and only if:


 


has full column rank.

θ0 ∈ Θ θ θ0
YT

Δ̄ :=

∂μy

∂θ′￼
0 0

∂vec( Ã )
∂θ′￼

Ã ′￼⊗ I − I ⊗ Ã 0
∂vec( B̃ )

∂θ′￼
B̃ ′￼⊗ I I ⊗ B̃

∂vec( C̃ )
∂θ′￼

−I ⊗ C̃ 0
∂vec( D̃ )

∂θ′￼
0 I ⊗ D̃

∂vec(Σu)
∂θ′￼

0 −2[Σu ⊗ I]



Intuition
Based upon identification results from control theory for minimal systems


Derive restrictions implied by equivalent model dynamics without computing any 
autocovariances or the spectral density


• for given size of shocks , each transfer function is potentially obtained from a multitude 
of quadruples 

• many pairs of transfer functions and size of shocks  that jointly generate the same spectral 
density


Rank condition: Check injectivity of restrictions by computing rank of Jacobian matrix


Order condition and some other useful diagnostics for IRFs

Σu
(A, B, C, D)

Σu



Dynare Implementation



identification;
Triggers the local identification tests and has two modes of operation:


• Point identification check (default)


• Monte Carlo mode (e.g. prior_mc=1000)


By default all model parameters and all stderr parameters are checked 


Parameters can be selected with estimated_params block either with


• initial values


• prior information



Warnings

Use best practices in your mod file!


Dynare's symbolic preprocessor interprets and implements the model 
definitions as expressed in the Dynare file


It will not reflect all parameter definitions which may be hidden e.g. in a 
custom _steadystate.m file (use steady_state_model instead)


Try to avoid declaring auxiliary parameters, but use the '#' syntax in the 
model block to declare endogenous parameters



Tracking singularities
When Jacobians are rank deficient, code tries to diagnose subset of parameters responsible


• ranks are computed using the singular value decomposition


• for columns of zeros in Jacobian, associated parameter is printed on command window


• compute pairwise- and multi-correlation coefficients for each column of Jacobian: if 
there are parameters with correlation coefficients equal to unity, these are printed on the 
command window


Alternatively, a brute-force approach to check rank conditions for all possible combinations 
can be triggered (checks_via_subsets=1)




Example: 
Point vs Monte Carlo

investadjust_identif.mod investadjust_identif_mc.mod



Computational remarks

Many options you can change, see the manual


Key issue: distinguish near linear dependence (weak identification) form true perfect collinearity


Whenever possible the code uses closed-form expressions to compute the Jacobians analytically 
 get_perturbation_params_derivs.m


Errors of numerical differentiations: the rank test for singularity is much more sensitive to the 
significance threshold set the by user in checking the rank when numerical derivatives are used

↪



Identification Strength



Weak identification
Even though all parameters are locally identifiable (enter objective function 
separately and it has a unique extremum), its curvature may be small in 
certain regions of the parameter space (especially in small samples)


Diagnostics are based on precision of parameter estimates computed via


• Inverse of (asymptotic) Fisher Information Matrix (Andrle, 2010; Ratto and 
Iskrev, 2011)


• Bayesian Learning Rate Indicator for growing sample sizes (Koop, Pesaran, 
Smith, 2013)



Identification Strength via 
Information Matrix



The Information Matrix Revisited

Precision of parameter estimates at the mode is given (asymptotically) by the 
inverse of the Fisher Information Matrix

Typically, non-singularity of this matrix is sufficient for local identification

ℐ(θ) = E [( ∂ log(p(y |θ))
∂θ′￼

)
′￼

( ∂ log(p(y |θ))
∂θ′￼

)]



The Information Matrix Revisited

Decompose Fisher Information Matrix

• variance matrix: 

• correlation matrix: 

ℐ(θ) = Δ1
2ℐ̃(θ)Δ1

2

Δ = diag(ℐ(θ))

ℐ̃(θ)



Identification Strength Intuition
1. The likelihood does not change when parameter  changes:


2. The effect on the likelihood is offset due to perfect correlation:


       


 This suggests that we can use this curvature information also for weak identification:

 and/or 

θi

∂ log(p(y |θ))
∂θi

= 0 ⇔ Δi = 0

ρi ≡ corr ( ∂ log(p(y |θ))
∂θi

,
∂ log(p(y |θ))

∂θ−i ) = 1

↪

Δi ≈ 0 ρi ≈ 1



Identification Strength Formally
If  is not singular, Cramer-Rao bound of the uncertainty of estimated 

Identification strength can therefore be measured using (Andrle, 2010):


                 


As this precision measure only uses the population objective function (expected log-likelihood), it is 
an a-priori measure


At the same time, it can be interpreted as the lower bound on the estimation uncertainty in an 
unbiased finite sample estimator

ℐ(θ) θi

std(θi) ≥ {ℐ(θ)−1}(ii)

si(θi) ≡ std(θi)
−1 =

1

{ℐ(θ)−1}(ii)

= Δi(1 − ρ2
i )



Identification Strength in Dynare
Problem: measure is percentage change in likelihood for a unit change in parameter  not 
unit free


Solution: multiply by the value of  to get a re-normalized version of the curvature

  [STRENGTH]


The sensitivity component contained in this measure (as opposed to the correlation 
component):


 [SENSITIVITY]

→

θi

sdyn
i (θi) ≡ θi × si(θi) =

θi
2

{ℐ(θ)−1}(ii)
= θi

2Δi × (1 − ρ2
i )

Δdyn
i = θ2

i Δi = θ2
i ℐ(θ)(i,i)



Alternative Normalization

Identification is often checked over the prior region, e.g. at the prior mean


Because some parameters may have a prior mean of zero, alternative 
normalization using the prior standard deviation 

   [STRENGTH]


         [SENSITIVITY]

σ(θi)

sprior
i = σ(θi)/ (ℐ(θ)−1)(i,i)

Δprior
i = σ(θi) ⋅ ℐ(θ)(i,i)



Identification Strength Plots

The identification toolbox shows, after the check of rank conditions, the plots 
of the strength of identification and of the sensitivity component for all estimated 
parameters


Example: invest_adjust_identif.mod



Numerical Remark: Computing ℐ(θ)
Asymptotic Information Matrix


• Fischer information matrix  can be computed analytically; which also provides an estimate of the 
Cramer-Rao lower bound of uncertainty of 

Moment Information Matrix


• perform (and repeat) stochastic simulations and compute sample moments of observed variables


• take covariance matrix of (first and second) simulated moments


• moment information matrix: 

• does NOT provide an estimate of the Cramer-Rao lower bound


• triggered with stochastic singularity and whenever the Asymptotic Information Matrix cannot be 
computed

ℐ(θ)
θ

ℐ(θ |mT) = J ⋅ Σ(mT)−1 ⋅ J′￼



Example: 
Identification Strength Plots

investadjust_identif_mc.mod



Identification Strength via 
Bayesian Learning Rate Indicator



Koop, Pesaran and Smith (2013)
Basic idea: strength of identification becomes better as more data becomes 
available, i.e. parameters are estimated more precisely


Suppose  is identified, whereas  is weakly identified such that the rank of 
the reduced-form parameters depends on the sample size T. For growing T the 
posterior precision of


•  divided by the sample size will go to zero.


•  divided by the sample size will go to a constant

 Bayesian simulation approach

θ2 θ1

θ1

θ2

↪



Koop, Pesaran and Smith (2013)
Not yet implemented as an option in the toolbox, but actually very easy to do:


• Simulate large dataset, estimate with Bayesian MCMC using first e.g. 100,  
300, 900, 2700... observations


• Look at either average posterior precisions or convergence ratios


Slice with double rotation (50x200x2500 draws) works very well as it requires 
almost no fine-tuning (and no mode-finding step)


Use parallel option to get more chains



Example: Kim (2003)

Source: Ivashchenko and Mutschler (2020)



The advanced=1 option of the 
toolbox



Point mode

Additional analysis of the LRE form (steady-state and dynamic model 
derivatives) for all model variables


Different Sensitivity Measure based on norm of columns of Jacobians


Analysis of identification patterns based on regressions and Singular Value 
Decompositions



A Different Sensitivity Measure

How do changes in the elements of  impact the model moments, the 
reduced form solution, and the dynamic model


Can be measured locally using the corresponding Jacobian with certain 
normalizations


Norm of the columns of the standardized Jacobian yields single aggregate 
sensitivity measure over all moments, solution matrices, or dynamic model 
Jacobians for each parameter

θ



Analyzing identification patterns

1. Check which group of one, two or more parameters is most capable to mimic 
(replace) the effect of each parameter


• A brute force search is done for each column of the Jacobian to detect the 
group of columns, having the highest explanatory power by a linear 
regression


2. Take singular value decomposition of Information matrix 


• display eigenvectors corresponding to smallest (or highest) singular values



Example: 
Advanced option in point mode

investadjust_identif_advanced.mod



Monte Carlo mode

Analysis of the condition number of the Jacobians of moments, reduced-form 
and Linear Rational Expectations model and detection of the parameters that 
mostly drive large condition numbers (i.e. weaker identification)


Detailed point-estimate (identification strength and collinearity analysis) of 
the parameters set having the smallest/largest condition number


Analysis of the identification patterns across the Monte Carlo sample



Example: 
Advanced option in Monte Carlo mode

investadjust_identif_mc_advanced.mod



Identification of nonlinear and 
non-Gaussian DSGE models



Dynare's model framework
General DSGE model


 

 


Perturbation solution: Taylor-approximation around the non-stochastic 
steady-state:


Et f (zt+1, zt, zt−1, ut |θ) = 0

zt = g(zt−1, ut |θ)

zt = z̄ + gx(xt−1 − x̄) + guut +
1
2 [gxx(xt−1 − x̄) ⊗ (xt−1 − x̄) + 2gxu(xt−1 ⊗ ut) + guu(ut ⊗ ut) + gσσσ2] +

1
6

[…] + …



Problem of higher-order approximations
Possibility of explosive behavior in higher-order approximations


 Model may not be stationary or does not have an ergodic probability distribution


Solution: Pruning


• Leave out terms in solution that have higher-order effects than the approximation order


• Kim, Kim, Schaumburg and Sims (2008) and Andreasen, Fernández-Villaverde and Rubio-
Ramírez (2018) show that pruned state space is stationary and ergodic


• Lombardo and Uhlig (2017) or Lan and Meyer-Gohde (2013) provide theoretical foundation for 
this seemingly ad-hoc procedure   


↪



Univariate example

Two fixed-points:  and 

 Once the model passes the second fixed point it explodes

xt = gxxt−1 + gxxx2
t−1 + guut, |gx | < 1, gxx > 0

x̄ = 0 x̄ = (1 − gx)/gxx

↪



Univariate example
Decompose state vector into 1st- and 2nd-order effects


Stable solution: Prune terms that contain  and  to get law of motions:


 


 


 

xt = xf
t + xs

t = gxxf
t−1 + gxxs

t−1 + gxx (xf
t−1)

2
+ 2gxx (xf

t−1x
s
t−1)

2
+ gxx (xs

t−1)2 + guut

xf
t xs

t (xs
t )2

xf
t = gxxf

t−1 + guut

xs
t = gxxs

t−1 + gxx(xf
t−1)

2

(xf
t )2 = g2

x (xf
t−1)

2
+ 2gxguxf

t−1ut + g2
uu2

t



Univariate example

Pruned solution can be rewritten as a stable state-space system


xf
t
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Pruned State Space System
Proposition: 
Given an extended state vector  and an extended vector of innovations , the pruned perturbation 
solution of a DSGE model can be rewritten as a linear time-invariant state-space system for any 
approximation order:


 


 


Note: Even if  is Gaussian,  is not!


Higher-order statistics (HOS) may contain additional information for estimation and identification


Straightforward (but tedious) to compute moments, cumulants and polyspectra

zt ξt

zt = c + Azt−1 + Bξt

yt = ȳ + d + Czt−1 + Dξt

ut ξt

↪



Identification diagnostics for 
nonlinear DSGE models



Diagnostics for nonlinear DSGE
 We can use similar diagnostics based on moments or spectrum to detect local identification issues


• Note that first and second moments and spectral density are computed from the pruned 
state-space system


• Higher-order moments and polyspectra might be also considered (not yet in Dynare)


Identification Strength


• Asymptotic information matrix is not available analytically, but covariance of moments is 
approximated by simulation from pruned state space


• Bayesian Learning Rate indicator is readily available; however, one needs to use a nonlinear 
Kalman filter or a particle filter to evaluate the likelihood



Example: 
Identification via second-order 

approximation
investadjust_identif_second_order.mod



Concluding Remarks



Concluding Remarks
Fix obvious identification failures: calibrate or (better) re-parameterize your model


Use readily available tools to get insight into the workings of your model 


Identifiability is a model property that depends on the choices a modeler makes


• choice of observables


• functional specifications


• model features


• choice of structural shocks



Concluding Remarks
Some personal experience


• Larger models tend to be theoretically identified, but suffer from weak identification


• Robust inference under possible weak identification (Dufour et al., 2009, 2013; 
Kleibergen and Mavroeidis, 2009; Mavroeidis, 2005, 2010; Guerron-Quintana et 
al.,2013; Andrews and Mikusheva, 2014; Qu, 2014)


• wide confidence intervals for weakly identified parameters can be accompanied by 
narrow bands for IRFs


• Nonlinear or non-Gaussian approach might enrich identifiability and model 
dynamics (but comes at a price)


