Dynamic Stochastic General Equilibrium Models

Understanding Deterministic Simulations (Perfect Foresight)

EBERHARD KARLS TÜBINGEN

Willi Mutschler

Recap

- perfect foresight = agents perfectly anticipate all future shocks and policy actions
- concretely, at period 1 agents
 - learn the value of all future shocks and/or policy changes
 - compute their optimal plans for all future periods
 - no need to adjust anything in periods 2 and later
- model behaves as if it were deterministic, i.e. no decision rules or uncertainty

- the *unknowns* that we search for are the trajectories of the variables (not a decision rule) given the dynamic model equations and initial values
- costs:
 - effect of future uncertainty is not taken into account (e.g. no precautionary motive)
 - unexpected shocks only impact (in period 1)
- advantages:
 - global solution methods for rational expectations models
 - nonlinearities fully taken into account (e.g. occasionally binding constraints)

• numerical solution can be computed exactly (up to rounding errors), contrarily to perturbation or

applications

- initial model assessment, first glance at the propagation of shocks
- certain and predictable structural changes (e.g. taxes, new currency)
- long-run simulations (from one steady-state to another one)
- large models
- large shocks
- kinks and nonlinearities

Examples

Two-Country New-Keynesian Model with Zero-Lower-Bound on Interest Rates

nk2co common.mod

Common Model Equations

Two-Country New-Keynesian Model with Zero-Lower-Bound on Interest Rates

Temporary Monetary Policy Shock (Surprise)

nk2co_temp_monpol_surprise.mod

Temporary Monetary Policy Shock (Pre-Announced)

nk2co_temp_monpol_announced.mod

Two-Country New-Keynesian Model with Zero-Lower-Bound on Interest Rates

Two-Country New-Keynesian Model with Zero-Lower-Bound on Interest Rates

Permanent Increase Inflation Target (Surprise)

nk2co_perm_infltarget_surprise.mod

Two-Country New-Keynesian Model with Zero-Lower-Bound on Interest Rates

nk2co_perm_tax_announced.mod

Permanent Increase Income Tax (Pre-Announced)

Dynare Specifics

Summary of Commands

initval:

endval:

histval:

shocks:

perfect_foresight_setup:

perfect_foresight_solver:

- for the initial steady state (followed by steady)
- for the terminal steady state (followed by steady)
- for initial or terminal conditions out of steady state
- for shocks along the simulation path
- prepare the simulation
- compute the simulation

Under The Hood

• paths for exogenous and endogenous variables are stored in two MATLAB/Octave matrices:

- for historical reasons dates are in
 - columns in oo_.endo_simul
 - lines in oo_.exo_simul (hence the transpose ' above)

- oo_.endo_simul = $(y_0 \ y_1 \ \cdots \ y_T \ y_{T+1})$
- oo_.exo_simul' = $(\boxtimes u_1 \dots u_T \boxtimes)$

Under The Hood

perfect foresight setup

- y_0, y_{T+1} and $u_1 \dots u_T$ are the constraints of the problem
- $y_1 \dots y_T$ are the initial guess for the Newton algorithm

perfect foresight solver

• replaces $y_1 \dots y_T$ in oo_.endo_simul by the solution

• initializes those matrices, given the shocks, initval, endval and histval blocks:

The Algorithm

General DSGE Framework

deterministic, perfect foresight, case:

• identification rule: as many endogenous (y) as equations (f)

- $f(y_{t+1}, y_t, y_{t-1}, u_t) = 0$
- y: vector of endogenous variables
 - *u*: vector of exogenous shocks

More Than One Lead/Lag?

- can be transformed in the form with one lead and one lag using *auxiliary* variables:
- for example, if there is a variable with two leads x_{t+2} :
 - create a new auxiliary variable *a*
 - replace all occurrences of x_{t+2} by a_{t+1}
 - add a new equation: $a_t = x_{t+1}$
- symmetric process for variables with more than one lag
- transformation done automatically by Dynare

with future uncertainty, the transformation is more elaborate (but still possible) on variables with leads

Two-Boundary Value Problem

stacked system for a perfect foresight simulation over T periods:

$$F(Y) = \begin{cases} f(y_2, y_1, y_0, u_1) \\ f(y_3, y_2, y_1, u_2) \\ f(y_{T+1}, y_T, y_{T-1}, u_T) \end{cases}$$

where $Y = \begin{bmatrix} y'_1 & y'_2 & \dots & y'_T \end{bmatrix}'$ and $y_0, y_{T+1}, u_1 \dots u_T$ are implicit

goal: find a trajectory Y, i.e. values, for y_1, y_2, \ldots, y_T given $y_0, y_{T+1}, u_1 \ldots u_T$

solution: Newton-type iterations

) = 0 $(u_2) = 0$ for y_0 and y_{T+1} given 0 = 0

Newton Method (1)

Newton Method (2)

Newton Method (3)

Newton Method (4)

Newton Method (5)

Newton Method (6)

Newton Method (7)

Newton Method (8)

Newton Method (9)

Newton Method (10)

Newton Method (11)

Newton Method (12)

Newton Method (13)

Newton Method (14)

Newton Method (15)

Newton Method (16)

Newton Method (17)

Newton Method (18)

The Perfect Foresight Algorithm

- start from an initial guess $Y^{(0)}$ (incorporating the simulation scenario)
- iterate according to Newton algorithm
- updated solutions $Y^{(k+1)}$ are obtained by solving a linear system:

$$F(Y^{(k)}) + \left[\frac{\partial F}{\partial Y}\right] \left(Y^{(k+1)} - Y^{(k)}\right) = 0$$

$$\Leftrightarrow \left(Y^{(k+1)}-\right.$$

- terminal condition: $||Y^{(k+1)} Y^{(k)}|| < \varepsilon_Y$ or $||F(Y^{(k)})|| < \varepsilon_F$
- infinite loops by setting a maximum number of iterations)

$$Y^{(k)} = -\left[\frac{\partial F}{\partial Y}\right]^{-1} F(Y^{(k)})$$

• convergence may never happen if function is ill-behaved or initial guess $Y^{(0)}$ too far from a solution (abort

Controlling Newton Algorithm From Dynare

maxit: Maximum number of iterations before aborting (default: 50) tolf: Convergence criterion based on function value (ε_F) (default: 10⁻⁵)

- options to perfect foresight solver can be used to control the Newton algorithm:

 - tolx: Convergence criterion based on change in the function argument (ε_V) (default: 10⁻⁵)
 - stack solve algo: select between the different flavors of Newton algorithms

Initial Guess

- Newton algorithm needs an initial guess $Y^{(0)} = [y_1^{(0)} \dots y_T^{(0)}]$
- by default, if there is no endval block, it is the steady state as specified by initval (repeated for all simulations periods)
- if there is an endval block, then it is the final steady state declared within this block
- possibility of customizing this default by manipulating oo_.endo_simul after but before (!) perfect foresight solver

```
perfect foresight setup
```

Approximating Infinite-Horizon Problems

- technically we numerically compute trajectories over a *finite* number of periods T
- what about an *infinite*-horizon problem (e.g. return to steady-state) $T \rightarrow \infty$?
 - one option consists in computing a recursive policy function (as with perturbation methods)
 - but this is challenging, Dynare does not do that
- easier way:
 - approximate the solution by a finite-horizon problem with *T large enough*
 - drawback: solution is specific to a given sequence of shocks and not generic

Jacobian

Shape Of Jacobian

$$A_{s} = \frac{\partial f}{\partial y_{t-1}}(y_{s+1}, y_{s}, y_{s-1}) \qquad B_{s} = \frac{\partial f}{\partial y_{t}}(y_{s+1}, y_{s}, y_{s-1}) \qquad C_{s} = \frac{\partial f}{\partial y_{t+1}}(y_{s+1}, y_{s}, y_{s-1})$$

Shape Of Jacobian

- variables, it is a matrix of dimension $nT \times nT$
- three alternative ways of dealing with the large problem size:
 - stack solve algo=6
 - handle the Jacobian as one large, sparse, matrix (now the default method) stack solve algo=0
 - with one of the previous two methods)

• the Jacobian can be very large: for a simulation over T periods of a model with n endogenous

• exploit the particular structure of the Jacobian using a technique developped by Laffargue, Boucekkine and Juillard (was the default method in Dynare ≤ 4.2)

• block decomposition, which is a divide-and-conquer method (can actually be combined

• consider the following matrix with most elements equal to zero:

A =

dense matrix storage (in column-major order) treats it as a one-dimensional array:

- sparse matrix storage

 - A would be stored as

Sparse Matrices

$$\begin{pmatrix} 0 & 0 & 2.5 \\ -3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

[0, -3, 0, 0, 0, 0, 2.5, 0, 0]

• views it as a list of triplets (i, j, v) where (i, j) is a matrix coordinate and v a non-zero value

 $\{(2,1,-3),(1,3,2.5)\}$

- given an $m \times n$ matrix with k non-zero elements:
 - dense matrix storage = 8mn bytes
 - sparse matrix storage = 16k bytes
 - assuming 32-bit integers and 64-bit floating point numbers
 - sparse storage more memory-efficient as soon as k < mn/2
- are vectorized

Sparse Matrices

• in practice, sparse storage becomes interesting if $k \ll mn/2$, because linear algebra algorithms

Sparse Jacobian

- the Jacobian of the deterministic problem is a sparse matrix:
 - lots of zero blocks
 - the A_s , B_s and C_s are usually also highly sparse
- - available as native objects in MATLAB/Octave (see the sparse command)
 - works well for medium size deterministic models
- of the Jacobian
- default method in Dynare (stack solve algo=0)

• family of optimized algorithms for sparse matrices (including matrix inversion for our Newton algorithm)

often more efficient than Laffargue-Boucekkine-Juillard, even though it does not exploit the particular structure

Re-implement Algorithm in MATLAB

nk2co_understand_perfect_foresight.m