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Deterministic Simulations
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Deterministic Simulations

• perfect foresight = agents perfectly anticipate all future shocks and policy actions 

• concretely, at period 1 agents 

• learn the value of  all future shocks and/or policy changes 

• compute their optimal plans for all future periods 

• no need to adjust anything in periods 2 and later 

• model behaves as if  it were deterministic, i.e. no decision rules or uncertainty



Deterministic Simulations
• the unknowns that we search for are the trajectories of  the variables (not a decision rule) given the 

dynamic model equations and initial values 

• costs: 

• effect of  future uncertainty is not taken into account (e.g. no precautionary motive) 

• unexpected shocks only impact (in period 1) 

• advantages: 

• numerical solution can be computed exactly (up to rounding errors), contrarily to perturbation or 
global solution methods for rational expectations models 

• nonlinearities fully taken into account (e.g. occasionally binding constraints)



Deterministic Simulations
applications 

• initial model assessment, first glance at the propagation of  shocks 

• certain and predictable structural changes (e.g. taxes, new currency) 

• long-run simulations (from one steady-state to another one) 

• large models 

• large shocks 

• kinks and nonlinearities



Examples



Two-Country New-Keynesian Model with 
Zero-Lower-Bound on Interest Rates

nk2co_common.mod

Common Model Equations



Two-Country New-Keynesian Model with 
Zero-Lower-Bound on Interest Rates

nk2co_temp_monpol_surprise.mod

Temporary Monetary Policy Shock
(Surprise)



Two-Country New-Keynesian Model with 
Zero-Lower-Bound on Interest Rates

nk2co_temp_monpol_announced.mod

Temporary Monetary Policy Shock
(Pre-Announced)



Two-Country New-Keynesian Model with 
Zero-Lower-Bound on Interest Rates

nk2co_perm_infltarget_surprise.mod

Permanent Increase Inflation Target 
(Surprise)



Two-Country New-Keynesian Model with 
Zero-Lower-Bound on Interest Rates

nk2co_perm_tax_announced.mod

Permanent Increase Income Tax 
(Pre-Announced)



Dynare Specifics



Summary of  Commands

initval: 

endval: 

histval: 

shocks: 

perfect_foresight_setup: 

perfect_foresight_solver:

for the initial steady state (followed by steady) 

for the terminal steady state (followed by steady) 

for initial or terminal conditions out of  steady state 

for shocks along the simulation path 

prepare the simulation 

compute the simulation



Under The Hood

• paths for exogenous and endogenous variables are stored in two MATLAB/Octave matrices: 

     

 

• for historical reasons dates are in 

• columns in  

• lines in  (hence the transpose  above)

oo_.endo_simul = (y0 y1 … yT yT+1)

oo_.exo_simul' = ( ⊠ u1 … uT ⊠ )

oo_.endo_simul

oo_.exo_simul '



Under The Hood

perfect_foresight_setup 

• initializes those matrices, given the shocks, initval, endval and histval blocks: 

• ,  and  are the constraints of  the problem 

•  are the initial guess for the Newton algorithm 

perfect_foresight_solver 

• replaces  in  by the solution

y0 yT+1 u1…uT

y1…yT

y1…yT oo_.endo_simul



The Algorithm



General DSGE Framework

• deterministic, perfect foresight, case: 

   

: vector of  endogenous variables 

: vector of  exogenous shocks 

• identification rule: as many endogenous ( ) as equations ( )

f(yt+1, yt, yt−1, ut) = 0

y

u

y f



More Than One Lead/Lag?
• can be transformed in the form with one lead and one lag using auxiliary variables: 

• for example, if  there is a variable with two leads : 

• create a new auxiliary variable  

• replace all occurrences of   by  

• add a new equation:  

• symmetric process for variables with more than one lag 

• with future uncertainty, the transformation is more elaborate (but still possible) on variables with leads  

• transformation done automatically by Dynare 

xt+2

a

xt+2 at+1

at = xt+1



Two-Boundary Value Problem
stacked system for a perfect foresight simulation over  periods: 

             for  and  given 

where  and , ,  are implicit 

goal: find a trajectory , i.e. values, for  given , ,  

solution: Newton-type iterations

T

F(Y) =

f(y2, y1, y0, u1) = 0
f(y3, y2, y1, u2) = 0

⋮
f(yT+1, yT, yT−1, uT) = 0

y0 yT+1

Y = [y′ 1 y′ 2 … y′ T]′ y0 yT+1 u1…uT

Y y1, y2, . . . , yT y0 yT+1 u1…uT



Newton Method (1)



Newton Method (2)



Newton Method (3)



Newton Method (4)



Newton Method (5)



Newton Method (6)



Newton Method (7)



Newton Method (8)



Newton Method (9)



Newton Method (10)



Newton Method (11)



Newton Method (12)



Newton Method (13)



Newton Method (14)



Newton Method (15)



Newton Method (16)



Newton Method (17)



Newton Method (18)



The Perfect Foresight Algorithm
• start from an initial guess  (incorporating the simulation scenario) 

• iterate according to Newton algorithm 

• updated solutions  are obtained by solving a linear system: 

 

 

• terminal condition:          or        

• convergence may never happen if  function is ill-behaved or initial guess  too far from a solution (abort 
infinite loops by setting a maximum number of  iterations)

Y(0)

Y(k+1)

F(Y(k)) + [ ∂F
∂Y ] (Y(k+1) − Y(k)) = 0

⇔ (Y(k+1) − Y(k)) = − [ ∂F
∂Y ]

−1

F(Y(k))

| |Y(k+1) − Y(k) | | < εY | |F(Y(k)) | | < εF

Y(0)



Controlling Newton Algorithm From Dynare

options to perfect_foresight_solver can be used to control the Newton algorithm: 

maxit: Maximum number of  iterations before aborting (default: 50) 

tolf: Convergence criterion based on function value ( ) (default: ) 

tolx: Convergence criterion based on change in the function argument ( ) (default: ) 

stack_solve_algo: select between the different flavors of  Newton algorithms

εF 10−5

εY 10−5



Initial Guess

• Newton algorithm needs an initial guess  

• by default, if  there is no endval block, it is the steady state as specified by initval 
(repeated for all simulations periods) 

• if  there is an endval block, then it is the final steady state declared within this block 

• possibility of  customizing this default by manipulating  
                      after              perfect_foresight_setup 
                      but before (!) perfect_foresight_solver

Y(0) = [y(0)
1

′ … y(0)
T

′ ]

oo_.endo_simul



Approximating Infinite-Horizon Problems

• technically we numerically compute trajectories over a finite number of  periods  

• what about an infinite-horizon problem (e.g. return to steady-state) ? 

• one option consists in computing a recursive policy function (as with perturbation methods) 

• but this is challenging, Dynare does not do that 

• easier way: 

• approximate the solution by a finite-horizon problem with  large enough 

• drawback: solution is specific to a given sequence of  shocks and not generic

T

T → ∞

T



Jacobian



Shape Of  Jacobian

 

                    

∂F
∂Y

=

B1 C1
A2 B2 C2

⋱ ⋱ ⋱
At Bt Ct

⋱ ⋱ ⋱
AT−1 BT−1 CT−1

AT BT

As =
∂f

∂yt−1
(ys+1, ys, ys−1) Bs =

∂f
∂yt

(ys+1, ys, ys−1) Cs =
∂f

∂yt+1
(ys+1, ys, ys−1)



Shape Of  Jacobian
• the Jacobian can be very large: for a simulation over  periods of  a model with  endogenous 

variables, it is a matrix of  dimension  

• three alternative ways of  dealing with the large problem size: 

• exploit the particular structure of  the Jacobian using a technique developped by 
Laffargue, Boucekkine and Juillard (was the default method in Dynare  4.2) 
stack_solve_algo=6 

• handle the Jacobian as one large, sparse, matrix (now the default method) 
stack_solve_algo=0 

• block decomposition, which is a divide-and-conquer method (can actually be combined 
with one of  the previous two methods)

T n
nT × nT

≤



Sparse Matrices
• consider the following matrix with most elements equal to zero: 

 

• dense matrix storage (in column-major order) treats it as a one-dimensional array: 

 

• sparse matrix storage 

• views it as a list of  triplets  where  is a matrix coordinate and  a non-zero value 

•  would be stored as                         

A =
0 0 2.5

−3 0 0
0 0 0

[0, − 3,0,0,0,0,2.5,0,0]

(i, j, v) (i, j) v

A {(2,1, − 3), (1,3,2.5)}



Sparse Matrices

• given an  matrix with  non-zero elements: 

• dense matrix storage =  bytes 

• sparse matrix storage =  bytes 

• assuming 32-bit integers and 64-bit floating point numbers 

• sparse storage more memory-efficient as soon as  

• in practice, sparse storage becomes interesting if  , because linear algebra algorithms 
are vectorized

m × n k

8mn

16k

k < mn/2

k ≪ mn/2



Sparse Jacobian
• the Jacobian of  the deterministic problem is a sparse matrix: 

• lots of  zero blocks 

• the ,  and  are usually also highly sparse 

• family of  optimized algorithms for sparse matrices (including matrix inversion for our Newton algorithm) 

• available as native objects in MATLAB/Octave (see the sparse command) 

• works well for medium size deterministic models 

• often more efficient than Laffargue-Boucekkine-Juillard, even though it does not exploit the particular structure 
of  the Jacobian 

• default method in Dynare (stack_solve_algo=0)

As Bs Cs



Re-implement Algorithm in MATLAB

nk2co_understand_perfect_foresight.m


